IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v69y2014icp246-252.html
   My bibliography  Save this article

Analysis of Linux kernel as a complex network

Author

Listed:
  • Gao, Yichao
  • Zheng, Zheng
  • Qin, Fangyun

Abstract

Operating system (OS) acts as an intermediary between software and hardware in computer-based systems. In this paper, we analyze the core of the typical Linux OS, Linux kernel, as a complex network to investigate its underlying design principles. It is found that the Linux Kernel Network (LKN) is a directed network and its out-degree follows an exponential distribution while the in-degree follows a power-law distribution. The correlation between topology and functions is also explored, by which we find that LKN is a highly modularized network with 12 key communities. Moreover, we investigate the robustness of LKN under random failures and intentional attacks. The result shows that the failure of the large in-degree nodes providing basic services will do more damage on the whole system. Our work may shed some light on the design of complex software systems.

Suggested Citation

  • Gao, Yichao & Zheng, Zheng & Qin, Fangyun, 2014. "Analysis of Linux kernel as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 246-252.
  • Handle: RePEc:eee:chsofr:v:69:y:2014:i:c:p:246-252
    DOI: 10.1016/j.chaos.2014.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914001799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    3. Cao, Xian-Bin & Hong, Chen & Du, Wen-Bo & Zhang, Jun, 2013. "Improving the network robustness against cascading failures by adding links," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 35-40.
    4. Zhang, Jun & Cao, Xian-Bin & Du, Wen-Bo & Cai, Kai-Quan, 2010. "Evolution of Chinese airport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3922-3931.
    5. Chen Liu & Wen-Bo Du & Wen-Xu Wang, 2014. "Particle Swarm Optimization with Scale-Free Interactions," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-8, May.
    6. Du, Wen-Bo & Wu, Zhi-Xi & Cai, Kai-Quan, 2013. "Effective usage of shortest paths promotes transportation efficiency on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3505-3512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    2. Wang, Haoqin & Chen, Zhen & Xiao, Guanping & Zheng, Zheng, 2016. "Network of networks in Linux operating system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 520-526.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xue-Jun & Xu, Guo-Qiang & Zhu, Yan-Bo & Xia, Yong-Xiang, 2016. "Cascade-robustness optimization of coupling preference in interconnected networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 123-129.
    2. Wang, Haoqin & Chen, Zhen & Xiao, Guanping & Zheng, Zheng, 2016. "Network of networks in Linux operating system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 520-526.
    3. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    4. Lordan, Oriol & Sallan, Jose M. & Escorihuela, Nuria & Gonzalez-Prieto, David, 2016. "Robustness of airline route networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 18-26.
    5. Rong, Lei & Liu, Jing, 2018. "A heuristic algorithm for enhancing the robustness of scale-free networks based on edge classification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 503-515.
    6. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    7. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    8. Wang, Jianwei & Cai, Lin & Xu, Bo & Li, Peng & Sun, Enhui & Zhu, Zhiguo, 2016. "Out of control: Fluctuation of cascading dynamics in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1231-1243.
    9. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    10. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    11. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    12. Zhu, Qian & Zhu, Zhiliang & Wang, Yifan & Yu, Hai, 2016. "Fuzzy-information-based robustness of interconnected networks against attacks and failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 194-203.
    13. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    14. Yang, Zhirou & Liu, Jing, 2018. "A memetic algorithm for determining the nodal attacks with minimum cost on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1041-1053.
    15. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    16. Yuchen Pan & Shuai Ding & Wenjuan Fan & Jing Li & Shanlin Yang, 2015. "Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    17. Sodam Baek & Kibae Kim & Jorn Altmann, 2014. "Role of Platform Providers in Service Networks: The Case of Salesforce.com AppExchange," TEMEP Discussion Papers 2014112, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised May 2014.
    18. Bai, Bingfeng, 2022. "Strategic business management for airport alliance: A complex network approach to simulation robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    19. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    20. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:69:y:2014:i:c:p:246-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.