IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v503y2018icp503-515.html
   My bibliography  Save this article

A heuristic algorithm for enhancing the robustness of scale-free networks based on edge classification

Author

Listed:
  • Rong, Lei
  • Liu, Jing

Abstract

The essential of existing methods for promoting network robustness is randomly exchanging the edges of networks. Without considering the network structure, the performance of these algorithms is limited. Therefore, we put forward a way for classifying the edges of networks into three types, which are valid edges, invalid edges and flexible edges. Then, a heuristic optimization algorithm, which is designed based on the edge classification (EC) against malicious attacks (MA), is proposed to improve the robustness of scale-free (RSF) network termed as EC-RSFMA. EC-RSFMA improves the robustness of scale-free networks by adjusting the number of edges of each type and changing the connection relation of the same type of edges under the constraint that the degree distribution remains to be unchanged. In the experiments, the performance of EC-RSFMA is validated on both synthetic and real-world networks. The results show that EC-RSFMA outperforms the existing algorithms.

Suggested Citation

  • Rong, Lei & Liu, Jing, 2018. "A heuristic algorithm for enhancing the robustness of scale-free networks based on edge classification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 503-515.
  • Handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:503-515
    DOI: 10.1016/j.physa.2018.02.173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302620
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    2. Zhang, Jun & Cao, Xian-Bin & Du, Wen-Bo & Cai, Kai-Quan, 2010. "Evolution of Chinese airport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3922-3931.
    3. Du, Wen-Bo & Wu, Zhi-Xi & Cai, Kai-Quan, 2013. "Effective usage of shortest paths promotes transportation efficiency on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3505-3512.
    4. Vitor H. P. Louzada & Fabio Daolio & Hans J. Herrmann & Marco Tomassini, "undated". "Smart rewiring for network robustness," Working Papers ETH-RC-14-004, ETH Zurich, Chair of Systems Design.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Sai Saranga & Raman, Karthik, 2022. "Effect of dormant spare capacity on the attack tolerance of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yichao & Zheng, Zheng & Qin, Fangyun, 2014. "Analysis of Linux kernel as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 246-252.
    2. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    3. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    4. Yang, Zhirou & Liu, Jing, 2018. "A memetic algorithm for determining the nodal attacks with minimum cost on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1041-1053.
    5. Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
    6. Bai, Bingfeng, 2022. "Strategic business management for airport alliance: A complex network approach to simulation robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    7. Zhang, Yanjie & Ayyub, Bilal M. & Saadat, Yalda & Zhang, Dongming & Huang, Hongwei, 2020. "A double-weighted vulnerability assessment model for metrorail transit networks and its application in Shanghai metro," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    8. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    9. Sun, Shiwen & Li, Ruiqi & Wang, Li & Xia, Chengyi, 2015. "Reduced synchronizability of dynamical scale-free networks with onion-like topologies," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 249-256.
    10. Lordan, Oriol & Sallan, Jose M. & Escorihuela, Nuria & Gonzalez-Prieto, David, 2016. "Robustness of airline route networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 18-26.
    11. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    12. Wang, Haoqin & Chen, Zhen & Xiao, Guanping & Zheng, Zheng, 2016. "Network of networks in Linux operating system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 520-526.
    13. Lordan, Oriol & Sallan, Jose M. & Simo, Pep, 2014. "Study of the topology and robustness of airline route networks from the complex network approach: a survey and research agenda," Journal of Transport Geography, Elsevier, vol. 37(C), pages 112-120.
    14. Zhang, Jianhua & Xu, Xiaoming & Hong, Liu & Wang, Shuliang & Fei, Qi, 2011. "Networked analysis of the Shanghai subway network, in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4562-4570.
    15. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    16. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    17. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    18. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    19. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    20. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:503-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.