IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925004035.html
   My bibliography  Save this article

Analysis of final size and peak time for SIR epidemic model on simplicial complexes

Author

Listed:
  • Xu, Ting
  • Zhang, Juping
  • Jin, Zhen

Abstract

The Susceptible–Infected–Recovered (SIR) epidemic model based on a simplicial complex is investigated, incorporating higher-order network topology and nonlinear incidence rates. We derive theoretical results for the basic reproduction number, the final size, and the epidemic peak of the mean-field model. Furthermore, we provide a theoretical estimate for the peak time of an epidemic. Numerical simulations reveal that higher-order interactions significantly impact the dynamics of epidemic transmission. Specifically, as the strength of higher-order interactions increases, both the final size and the epidemic peak heighten, while the peak time is shortened. These findings highlight the importance of considering higher-order structures in modeling epidemic spread.

Suggested Citation

  • Xu, Ting & Zhang, Juping & Jin, Zhen, 2025. "Analysis of final size and peak time for SIR epidemic model on simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004035
    DOI: 10.1016/j.chaos.2025.116390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.