IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000761.html
   My bibliography  Save this article

Integrating static and dynamic game theory with complex networks: Enhancing strategy dynamics through adaptive update rules

Author

Listed:
  • Hakhamanesh, Reza
  • Mohammadzadeh, Javad
  • Gholami Khaibary, Hadi
  • Azimi, Masoomeh

Abstract

Understanding the dynamics of strategic interactions in real-world systems is crucial across various fields, from economics to biology. This research is motivated by the need to bridge the gap between game theory models and the complex structures of real-world networks, particularly scale-free networks with their robust, hub-dominated topology. This study explores the integration of evolutionary game dynamics within complex networks under various update rules to identify which game-theoretic model—static or dynamic, with complete or incomplete information—most closely resembles real-world scenarios. Focusing on evolutionary games such as the Prisoner's Dilemma, Signaling Game, Auction Game, and the Ultimatum Game, and examining the degree distribution exponent γ to determine the best match to scale-free properties. The findings of this study reveals that the analysis of cooperation levels across various game types and network structures reveals that strategic interactions significantly influence the efficiency of reaching Nash equilibrium. Higher cooperation levels are observed in structured networks, while stochastic best response strategies show consistent timeframes to equilibrium. These findings highlight the critical role of network topology and strategy in fostering cooperative behavior, providing insights into how network topology influences the evolution of strategies and offering a robust framework for future studies on applying game theory to real-world network dynamics.

Suggested Citation

  • Hakhamanesh, Reza & Mohammadzadeh, Javad & Gholami Khaibary, Hadi & Azimi, Masoomeh, 2025. "Integrating static and dynamic game theory with complex networks: Enhancing strategy dynamics through adaptive update rules," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000761
    DOI: 10.1016/j.chaos.2025.116063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jackson, Matthew O. & Wolinsky, Asher, 1996. "A Strategic Model of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 71(1), pages 44-74, October.
    2. Aumann, Robert J. & Heifetz, Aviad, 2002. "Incomplete information," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 43, pages 1665-1686, Elsevier.
    3. Dorogovtsev, S.N. & Mendes, J.F.F., 2003. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780198515906, Decembrie.
    4. Hu, Zhenhua & Song, Gaohui & Hu, Ziyue & Fang, Jiaqi, 2024. "An improved dynamic game analysis of farmers, enterprises and rural collective economic organizations based on idle land reuse policy," Land Use Policy, Elsevier, vol. 140(C).
    5. Sasan Harifi & Madjid Khalilian & Javad Mohammadzadeh & Sadoullah Ebrahimnejad, 2021. "Optimization in solving inventory control problem using nature inspired Emperor Penguins Colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1361-1375, June.
    6. Mozart B C Menezes & Seokjin Kim & Rongbing Huang, 2017. "Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-9, June.
    7. Massimo Franceschet, 2011. "Collaboration in computer science: A network science approach," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(10), pages 1992-2012, October.
    8. Dragana M Pavlovic & Petra E Vértes & Edward T Bullmore & William R Schafer & Thomas E Nichols, 2014. "Stochastic Blockmodeling of the Modules and Core of the Caenorhabditis elegans Connectome," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-16, July.
    9. Caldarelli, Guido, 2007. "Scale-Free Networks: Complex Webs in Nature and Technology," OUP Catalogue, Oxford University Press, number 9780199211517, Decembrie.
    10. Massimo Franceschet, 2011. "Collaboration in computer science: A network science approach," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(10), pages 1992-2012, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João M. Fernandes & Miguel P. Monteiro, 2017. "Evolution in the number of authors of computer science publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 529-539, February.
    2. Ya-Chun Gao & Zong-Wen Wei & Bing-Hong Wang, 2013. "Dynamic Evolution Of Financial Network And Its Relation To Economic Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-10.
    3. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    4. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    5. Vincenza Carchiolo & Marco Grassia & Michele Malgeri & Giuseppe Mangioni, 2022. "Co-Authorship Networks Analysis to Discover Collaboration Patterns among Italian Researchers," Future Internet, MDPI, vol. 14(6), pages 1-15, June.
    6. Rong, Rong & Houser, Daniel, 2015. "Growing stars: A laboratory analysis of network formation," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 380-394.
    7. Alexander Nesterov & Pablo Héctor Mata Villafuerte, 2023. "Critical phenomena in complex networks: from scale-free to random networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(11), pages 1-14, November.
    8. Lipeng Fan & Yuefen Wang & Shengchun Ding & Binbin Qi, 2020. "Productivity trends and citation impact of different institutional collaboration patterns at the research units’ level," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1179-1196, November.
    9. Jinseok Kim & Liang Tao & Seok-Hyoung Lee & Jana Diesner, 2016. "Evolution and structure of scientific co-publishing network in Korea between 1948–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 27-41, April.
    10. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    11. Javier Luis Cánovas Izquierdo & Valerio Cosentino & Jordi Cabot, 2016. "Analysis of co-authorship graphs of CORE-ranked software conferences," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1665-1693, December.
    12. Alberto Gómez-Espés & Michael Färber & Adam Jatowt, 2024. "Benefits of international collaboration in computer science: a case study of China, the European Union, and the United States," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(2), pages 1155-1171, February.
    13. Vitor H. P. Louzada & Fabio Daolio & Hans J. Herrmann & Marco Tomassini, "undated". "Smart rewiring for network robustness," Working Papers ETH-RC-14-004, ETH Zurich, Chair of Systems Design.
    14. Sung-Seok Ko & Namuk Ko & Doyeon Kim & Hyunseok Park & Janghyeok Yoon, 2014. "Analyzing technology impact networks for R&D planning using patents: combined application of network approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 917-936, October.
    15. Jinseok Kim, 2018. "Evaluating author name disambiguation for digital libraries: a case of DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1867-1886, September.
    16. F. Pozzi & T. Di Matteo & T. Aste, 2008. "Centrality And Peripherality In Filtered Graphs From Dynamical Financial Correlations," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 927-950.
    17. Yao, Yiyang & Zhou, Yinzuo, 2017. "Epidemic spreading on dual-structure networks with mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 218-225.
    18. Jukka-Pekka Onnela & Samuel Arbesman & Marta C González & Albert-László Barabási & Nicholas A Christakis, 2011. "Geographic Constraints on Social Network Groups," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-7, April.
    19. João M. Fernandes & António Costa & Paulo Cortez, 2022. "Author placement in Computer Science: a study based on the careers of ACM Fellows," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 351-368, January.
    20. , David, 2016. "The formation of networks with local spillovers and limited observability," Theoretical Economics, Econometric Society, vol. 11(3), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.