IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v190y2025ics0960077924013171.html
   My bibliography  Save this article

Dynamic analysis of a stochastic regime-switching Lotka–Volterra competitive system with distributed delays and Ornstein–Uhlenbeck process

Author

Listed:
  • Ma, Chenfei
  • Zhang, Xiaofeng
  • Yuan, Rong

Abstract

In this paper, we construct and analyze a stochastic regime-switching Lotka–Volterra competitive system with distributed delays and Ornstein–Uhlenbeck process. By the linear chain technique, we transform the stochastic model with weak kernel into an equivalent degenerate system. Firstly, we prove the existence and uniqueness of the global positive solution to the system. Then, we get the result of extinction and persistence in the mean of the x1 and x2 respectively. In addition, the sufficient conditions for the existence of the stationary distribution to the system are established by constructing some suitable Lyapunov functions. Finally, we provide some numerical examples to illustrate theoretical results, and some conclusions and analysis are given.

Suggested Citation

  • Ma, Chenfei & Zhang, Xiaofeng & Yuan, Rong, 2025. "Dynamic analysis of a stochastic regime-switching Lotka–Volterra competitive system with distributed delays and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924013171
    DOI: 10.1016/j.chaos.2024.115765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924013171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaofeng & Yuan, Rong, 2021. "A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    2. Zhang, Xiaofeng & Yuan, Rong, 2022. "Stochastic bifurcation and density function analysis of a stochastic logistic equation with distributed delay and weak kernel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 195(C), pages 56-70.
    3. Boukanjime, Brahim & Caraballo, Tomás & El Fatini, Mohamed & El Khalifi, Mohamed, 2020. "Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Valenti, D. & Fiasconaro, A. & Spagnolo, B., 2004. "Stochastic resonance and noise delayed extinction in a model of two competing species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(3), pages 477-486.
    5. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    6. A. La Cognata & D. Valenti & B. Spagnolo & A. A. Dubkov, 2010. "Two competing species in super-diffusive dynamical regimes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(2), pages 273-279, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okita, Kouki & Tatsukawa, Yuichi & Utsumi, Shinobu & Arefin, Md. Rajib & Hossain, Md. Anowar & Tanimoto, Jun, 2023. "Stochastic resonance effect observed in a vaccination game with effectiveness framework obeying the SIR process on a scale-free network," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Wang, Lei & Gao, Chunjie & Rifhat, Ramziya & Wang, Kai & Teng, Zhidong, 2024. "Stationary distribution and bifurcation analysis for a stochastic SIS model with nonlinear incidence and degenerate diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Nikolaos P. Rachaniotis & Thomas K. Dasaklis & Filippos Fotopoulos & Platon Tinios, 2021. "A Two-Phase Stochastic Dynamic Model for COVID-19 Mid-Term Policy Recommendations in Greece: A Pathway towards Mass Vaccination," IJERPH, MDPI, vol. 18(5), pages 1-21, March.
    4. Chun Zhang & Tao Yang & Shi-Xian Qu, 2021. "Impact of time delays and environmental noise on the extinction of a population dynamics model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-16, November.
    5. Yu, Xingwang & Wang, Shengdan & Yang, Yanhua & Ma, Yuanlin & Liu, Tiantian & Wei, Yifan, 2025. "P-bifurcation and bistability arising from cross-correlated sine-Wiener bounded noises: A stochastic single-species model incorporating double Allee effects," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    6. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2023. "An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    8. Valenti, D. & Tranchina, L. & Brai, M. & Caruso, A. & Cosentino, C. & Spagnolo, B., 2008. "Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)," Ecological Modelling, Elsevier, vol. 213(3), pages 449-462.
    9. Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Li, Yan & Zhang, Qimin, 2020. "The balanced implicit method of preserving positivity for the stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    11. Faik Bilgili & Emrah Koçak & Sevda Kuşkaya, 2023. "Dynamics and Co-movements Between the COVID-19 Outbreak and the Stock Market in Latin American Countries: An Evaluation Based on the Wavelet-Partial Wavelet Coherence Model," Evaluation Review, , vol. 47(4), pages 630-652, August.
    12. Lumi, Neeme & Laas, Katrin & Mankin, Romi, 2015. "Rising relative fluctuation as a warning indicator of discontinuous transitions in symbiotic metapopulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 109-118.
    13. Chen, Xingzhi & Tian, Baodan & Xu, Xin & Zhang, Hailan & Li, Dong, 2023. "A stochastic predator–prey system with modified LG-Holling type II functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 449-485.
    14. Wang, Haile & Zuo, Wenjie & Jiang, Daqing, 2023. "Dynamical analysis of a stochastic epidemic HBV model with log-normal Ornstein–Uhlenbeck process and vertical transmission term," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    16. Han, Bingtao & Jiang, Daqing, 2023. "Coexistence and extinction for a stochastic vegetation-water model motivated by Black–Karasinski process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    17. Midhun, T.A. & Murugesan, K., 2025. "Modeling HIV/AIDS with the effect of screening in India: A stochastic sex-structured approach incorporating logarithmic mean-reverting Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    18. Laaribi, Aziz & Boukanjime, Brahim & El Khalifi, Mohamed & Bouggar, Driss & El Fatini, Mohamed, 2023. "A generalized stochastic SIRS epidemic model incorporating mean-reverting Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    19. Xu, Xin & Tian, Baodan & Chen, Xingzhi & Qiu, Yanhong, 2024. "Dynamics of a stochastic food chain chemostat model with Monod–Haldane functional response and Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 495-512.
    20. Otunuga, Olusegun Michael, 2021. "Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924013171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.