IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011372.html
   My bibliography  Save this article

Dynamical analysis of a stochastic epidemic HBV model with log-normal Ornstein–Uhlenbeck process and vertical transmission term

Author

Listed:
  • Wang, Haile
  • Zuo, Wenjie
  • Jiang, Daqing

Abstract

Considering the transmission rate perturbed by log-normal Ornstein–Uhlenbeck process, we develop a stochastic HBV model with vertical transmission term. For higher-dimensional deterministic system, the local asymptotic stability of the endemic equilibrium is given by proving the global stability of the corresponding linearized system. For stochastic system, the existence of stationary distribution is obtained by constructing several suitable Lyapunov functions and using the ergodicity of the Ornstein–Uhlenbeck process and the critical value corresponding to the basic reproduction number for determined system is derived, which means the persistence of the disease. And sufficient conditions for disease extinction are given. Furthermore, by solving five-dimensional Fokker–Planck equation, the exact expression of the probability density function near the quasi-equilibrium is provided to reveal the statistical properties. In the end, numerical simulations illustrate our theoretical results and exhibit the trends of the critical values for persistence and extinction of diseases along with the change of noise intensity and reversion speed.

Suggested Citation

  • Wang, Haile & Zuo, Wenjie & Jiang, Daqing, 2023. "Dynamical analysis of a stochastic epidemic HBV model with log-normal Ornstein–Uhlenbeck process and vertical transmission term," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011372
    DOI: 10.1016/j.chaos.2023.114235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.