IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v193y2025ics0960077925001389.html
   My bibliography  Save this article

P-bifurcation and bistability arising from cross-correlated sine-Wiener bounded noises: A stochastic single-species model incorporating double Allee effects

Author

Listed:
  • Yu, Xingwang
  • Wang, Shengdan
  • Yang, Yanhua
  • Ma, Yuanlin
  • Liu, Tiantian
  • Wei, Yifan

Abstract

The interplay between a noisy environment and system nonlinearity can produce counterintuitive phenomena unexplained by deterministic models. The detailed mechanisms of these phenomena, however, are not completely clear. In this paper, we propose a stochastic single-species model incorporating double Allee effects and cross-correlated sine-Wiener bounded noises to study how environmental fluctuations induce P-bifurcation and bistability. We begin by deriving an approximate Fokker–Planck equation and its stationary probability distribution. We then explore noise-induced phenomena under both strong and weak Allee effects, explaining these through potential well depth. Finally, using mean first passage time, we estimate the transition time from a persistent state to an extinction state. Our findings demonstrate that: (i) P-bifurcation occurs in both strong and weak Allee effect scenarios, signifying transitions between positive and trivial states that are not possible in the deterministic model; (ii) bistability can be induced only under a strong Allee effect; (iii) multiplicative noise, correlation degree, and correlation time increase the risk of population extinction, while additive noise and the strength of the Allee effect can delay extinction.

Suggested Citation

  • Yu, Xingwang & Wang, Shengdan & Yang, Yanhua & Ma, Yuanlin & Liu, Tiantian & Wei, Yifan, 2025. "P-bifurcation and bistability arising from cross-correlated sine-Wiener bounded noises: A stochastic single-species model incorporating double Allee effects," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001389
    DOI: 10.1016/j.chaos.2025.116125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Lin, Qiao-Feng & Wang, Can-Jun & Yang, Ke-Li & Tian, Meng-Yu & Wang, Ya & Dai, Jia-Liang, 2019. "Cross-correlated bounded noises induced the population extinction and enhancement of stability in a population growth model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1046-1057.
    3. Shang, Zuchong & Qiao, Yuanhua, 2023. "Multiple bifurcations in a predator–prey system of modified Holling and Leslie type with double Allee effect and nonlinear harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 745-764.
    4. Xu, Chaoqun & Chen, Qiucun, 2024. "The effects of additional food and environmental stochasticity on the asymptotic properties of a nutrient–phytoplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. Valenti, D. & Tranchina, L. & Brai, M. & Caruso, A. & Cosentino, C. & Spagnolo, B., 2008. "Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)," Ecological Modelling, Elsevier, vol. 213(3), pages 449-462.
    6. Guo, Wei & Du, Lu-Chun & Mei, Dong-Cheng, 2012. "Transitions induced by time delays and cross-correlated sine-Wiener noises in a tumor–immune system interplay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1270-1280.
    7. Yu, Xingwang & Ma, Yuanlin, 2023. "Noise-induced bistability and noise-enhanced stability of a stochastic model for resource production–consumption under crowding effect and sigmoidal consumption pattern," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Saha, Bapi & Bhowmick, Amiya Ranjan & Chattopadhyay, Joydev & Bhattacharya, Sabyasachi, 2013. "On the evidence of an Allee effect in herring populations and consequences for population survival: A model-based study," Ecological Modelling, Elsevier, vol. 250(C), pages 72-80.
    9. Liu, Chao & Yu, Longfei & Zhang, Qingling & Li, Yuanke, 2018. "Dynamic analysis of a hybrid bioeconomic plankton system with double time delays and stochastic fluctuations," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 115-137.
    10. Bobryk, Roman V. & Chrzeszczyk, Andrzej, 2005. "Transitions induced by bounded noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 358(2), pages 263-272.
    11. Pal, Pallav Jyoti & Saha, Tapan, 2015. "Qualitative analysis of a predator–prey system with double Allee effect in prey," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 36-63.
    12. A. La Cognata & D. Valenti & B. Spagnolo & A. A. Dubkov, 2010. "Two competing species in super-diffusive dynamical regimes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(2), pages 273-279, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xingwang & Ma, Yuanlin, 2023. "Noise-induced bistability and noise-enhanced stability of a stochastic model for resource production–consumption under crowding effect and sigmoidal consumption pattern," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Zhu, Ping, 2021. "An equivalent analytical method to deal with cross-correlated exponential type noises in the nonlinear dynamic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Liu, Pei & Ning, Li Juan, 2016. "Transitions induced by cross-correlated bounded noises and time delay in a genotype selection model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 32-39.
    5. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Mandal, Gourav & Guin, Lakshmi Narayan & Chakravarty, Santabrata & Han, Renji, 2025. "Dynamic complexities in a predator–prey model with prey refuge influenced by double Allee effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 227(C), pages 527-552.
    7. Siewe, M. Siewe & Kenfack, W. Fokou & Kofane, T.C., 2019. "Probabilistic response of an electromagnetic transducer with nonlinear magnetic coupling under bounded noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 26-35.
    8. Raja Sekhara Rao, P. & Naresh Kumar, M., 2015. "A dynamic model for infectious diseases: The role of vaccination and treatment," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 34-49.
    9. Yu, Xingwang & Yuan, Sanling & Zhang, Tonghua, 2019. "Survival and ergodicity of a stochastic phytoplankton–zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 249-264.
    10. Han, Ping & Xu, Wei & Zhang, Hongxia & Wang, Liang, 2022. "Most probable trajectories in the delayed tumor growth model excited by a multiplicative non-Gaussian noise," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    11. Ruichen Qi & Shaoyi Chen & Caiyun Huang & Qiubao Wang, 2025. "The Stochastic Hopf Bifurcation and Vibrational Response of a Double Pendulum System Under Delayed Feedback Control," Mathematics, MDPI, vol. 13(13), pages 1-25, July.
    12. Sarif, Nawaj & Kumar, Arjun & Anshu, & Sarwardi, Sahabuddin & Dubey, Balram, 2024. "Spatio-temporal dynamics in a delayed prey–predator model with nonlinear prey refuge and harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    13. Yuanlin Ma & Xingwang Yu, 2022. "Stationary Probability Density Analysis for the Randomly Forced Phytoplankton–Zooplankton Model with Correlated Colored Noises," Mathematics, MDPI, vol. 10(14), pages 1-11, July.
    14. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    15. Li, Xiaoshuang & Pang, Danfeng & Wallhead, Philip & Bellerby, Richard Garth James, 2023. "Dynamics of an aquatic diffusive predator–prey model with double Allee effect and pH-dependent capture rate," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    16. Ma, Tianchi & Shen, Junxian & Song, Di & Xu, Feiyun, 2022. "Unsaturated piecewise bistable stochastic resonance with three kinds of asymmetries driven by multiplicative and additive noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    17. Chakraborty, Biman & Bhowmick, Amiya Ranjan & Chattopadhyay, Joydev & Bhattacharya, Sabyasachi, 2017. "Physiological responses of fish under environmental stress and extension of growth (curve) models," Ecological Modelling, Elsevier, vol. 363(C), pages 172-186.
    18. Ma, Chenfei & Zhang, Xiaofeng & Yuan, Rong, 2025. "Dynamic analysis of a stochastic regime-switching Lotka–Volterra competitive system with distributed delays and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    19. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    20. Zhao, Shengnan & Yuan, Sanling & Zhang, Tonghua, 2022. "The impact of environmental fluctuations on a plankton model with toxin-producing phytoplankton and patchy agglomeration," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.