IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923011815.html
   My bibliography  Save this article

Bursting oscillations in coupling Mathieu-van der Pol oscillator under parametric excitation

Author

Listed:
  • Jiang, Y.D.
  • Zhang, W.
  • Zhang, Y.F.
  • Bi, Q.S.

Abstract

The bursting oscillation is a fast-slow oscillation. A complex four-dimensional coupled Mathieu-van der Pol oscillator is analyzed to investigate the bursting oscillations. The multiscale phenomena appear in four-dimensional coupled Mathieu-van der Pol oscillator due to the significant difference between the natural frequencies of the system and frequencies of the parametric excitation. Analyzing the bifurcation diagrams of four-dimensional coupled Mathieu-van der Pol oscillator using the bifurcation theory and fast-slow analysis, we identify four different bursting oscillation modes. Additionally, an intriguing phenomenon is observed as the parameters of the fast and slow systems change in the orbits. This phenomenon is called as the slow channel effect. The trajectory traverses the bifurcation point without the immediate bifurcation behaviors but gradually converges to a stable limit cycle after an apparent delay. Four-dimensional coupled Mathieu-van der Pol oscillator has a composite Hopf bifurcation which means that a Hopf bifurcation respectively corresponds to the large and small limit cycles. This research provides the insights into the mechanism of the bursting oscillations.

Suggested Citation

  • Jiang, Y.D. & Zhang, W. & Zhang, Y.F. & Bi, Q.S., 2024. "Bursting oscillations in coupling Mathieu-van der Pol oscillator under parametric excitation," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923011815
    DOI: 10.1016/j.chaos.2023.114279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shaohua & Wang, Cong & Zhang, Hongli & Ma, Ping & Li, Xinkai, 2022. "Dynamic analysis and bursting oscillation control of fractional-order permanent magnet synchronous motor system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Wang, Shaojie & He, Shaobo & Yousefpour, Amin & Jahanshahi, Hadi & Repnik, Robert & Perc, Matjaž, 2020. "Chaos and complexity in a fractional-order financial system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Giresse, Tene Alain & Crépin, Kofane Timoleon, 2017. "Chaos generalized synchronization of coupled Mathieu-Van der Pol and coupled Duffing-Van der Pol systems using fractional order-derivative," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 88-100.
    4. Hassan Kamil Jassim & Mohammed Abdulshareef Hussein, 2023. "A New Approach for Solving Nonlinear Fractional Ordinary Differential Equations," Mathematics, MDPI, vol. 11(7), pages 1-13, March.
    5. Danjin Zhang & Youhua Qian, 2023. "Bursting Oscillations in General Coupled Systems: A Review," Mathematics, MDPI, vol. 11(7), pages 1-16, April.
    6. Semmler, Willi, 1995. "Solving Nonlinear Dynamic Models by Iterative Dynamic Programming," Computational Economics, Springer;Society for Computational Economics, vol. 8(2), pages 127-154, May.
    7. Guanrong Chen & Jin-quing Fang & Yiguang Hong & Huashu Qin, 2000. "Controlling hopf bifurcations: Discrete-time systems," Discrete Dynamics in Nature and Society, Hindawi, vol. 5, pages 1-5, January.
    8. Chen, Z. & Yu, P., 2005. "Controlling and anti-controlling Hopf bifurcations in discrete maps using polynomial functions," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1231-1248.
    9. Duan, Daifeng & Niu, Ben & Wei, Junjie, 2019. "Hopf-Hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 206-216.
    10. Wang, Lingyu & Sun, Kehui & Peng, Yuexi & He, Shaobo, 2020. "Chaos and complexity in a fractional-order higher-dimensional multicavity chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    11. Qi-Ming Chen & Michael Fischer & Yuki Nojiri & Michael Renger & Edwar Xie & Matti Partanen & Stefan Pogorzalek & Kirill G. Fedorov & Achim Marx & Frank Deppe & Rudolf Gross, 2023. "Quantum behavior of the Duffing oscillator at the dissipative phase transition," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Analysis and control of the bifurcation of Hodgkin–Huxley model," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 247-256.
    2. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Ninness, Brett, 2024. "Design of fractional-order hammerstein control auto-regressive model for heat exchanger system identification: Treatise on fuzzy-evolutionary computing," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Bai, Xiaoqin & Bai, Juan & Malomed, Boris A. & Yang, Rongcao, 2024. "Spectrum conversion and pattern preservation of Airy beams in fractional systems with a dynamical harmonic-oscillator potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Zhou, Shuang-Shuang & Jahanshahi, Hadi & Din, Qamar & Bekiros, Stelios & Alcaraz, Raúl & Alassafi, Madini O. & Alsaadi, Fawaz E. & Chu, Yu-Ming, 2021. "Discrete-time macroeconomic system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Ma, Tingting & Meng, Xinzhu & Hayat, Tasawar & Hobiny, Aatef, 2021. "Stability analysis and optimal harvesting control of a cross-diffusion prey-predator system," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Chen, Mengxin & Zheng, Qianqian, 2023. "Steady state bifurcation of a population model with chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Amina-Aicha Khennaoui & Adel Ouannas & Shaher Momani & Othman Abdullah Almatroud & Mohammed Mossa Al-Sawalha & Salah Mahmoud Boulaaras & Viet-Thanh Pham, 2022. "Special Fractional-Order Map and Its Realization," Mathematics, MDPI, vol. 10(23), pages 1-11, November.
    8. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Bifurcation control of the Hodgkin–Huxley equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 217-224.
    9. Kim, Sangkwon & Park, Jintae & Lee, Chaeyoung & Jeong, Darae & Choi, Yongho & Kwak, Soobin & Kim, Junseok, 2020. "Periodic travelling wave solutions for a reaction-diffusion system on landscape fitted domains," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Zhang, Zhe & Ai, Zhaoyang & Zhang, Jing & Cheng, Fanyong & Liu, Feng & Ding, Can, 2020. "A general stability criterion for multidimensional fractional-order network systems based on whole oscillation principle for small fractional-order operators," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    12. Chu, Yu-Ming & Bekiros, Stelios & Zambrano-Serrano, Ernesto & Orozco-López, Onofre & Lahmiri, Salim & Jahanshahi, Hadi & Aly, Ayman A., 2021. "Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. Shi, Jianping & He, Ke & Fang, Hui, 2022. "Chaos, Hopf bifurcation and control of a fractional-order delay financial system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 348-364.
    14. Shoji, Isao & Nozawa, Masahiro, 2022. "Geometric analysis of nonlinear dynamics in application to financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    15. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Yu, Pei & Leung, A.Y.T., 2007. "The simplest normal form and its application to bifurcation control," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 845-863.
    17. Che, Yanqiu & Liu, Bei & Li, Huiyan & Lu, Meili & Wang, Jiang & Wei, Xile, 2017. "Robust stabilization control of bifurcations in Hodgkin-Huxley model with aid of unscented Kalman filter," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 92-99.
    18. Gomez, Ledys Llasmin Salazar & Torres, Soledad & Kiseľák, Jozef & Fuders, Felix & Ishimura, Naoyuki & Yoshizawa, Yasukazu & Stehlík, Milan, 2022. "Long memory estimation in a non-Gaussian bivariate process," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    19. Peng Gao & Liandi Fang & Huihui Pan, 2024. "Interdisciplinary Education Promotes Scientific Research Innovation: Take the Composite Control of the Permanent Magnet Synchronous Motor as an Example," Mathematics, MDPI, vol. 12(16), pages 1-18, August.
    20. Li, Qinnan & Li, Ruihong & Huang, Dongmei, 2023. "Dynamic analysis of a new 4D fractional-order financial system and its finite-time fractional integral sliding mode control based on RBF neural network," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923011815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.