IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v131y2020ics0960077919304345.html
   My bibliography  Save this article

Chaos and complexity in a fractional-order higher-dimensional multicavity chaotic map

Author

Listed:
  • Wang, Lingyu
  • Sun, Kehui
  • Peng, Yuexi
  • He, Shaobo

Abstract

In this paper, a fractional-order higher-dimensional multicavity chaotic map is investigated in the Caputo discrete delta’s sense. The numerical formula of discrete fractional-order chaotic map is deduced by utilizing the discrete fractional calculus (DFC). Taking a two-demensional model as an example, the dynamical analysis of the fractional-order multicavity chaotic map is carried out in detail by means of attractors, bifurcation diagrams, permutation entropy complexity and distribution characteristics. Moreover, there is a comparison between the fractional-order system and its integer-order counterpart for their behaviors. It shows that the fractional-order system has richer dynamical behaviors, higher complexity and more uniform distribution characteristics, which means that the fractional-order system has better engineering application.

Suggested Citation

  • Wang, Lingyu & Sun, Kehui & Peng, Yuexi & He, Shaobo, 2020. "Chaos and complexity in a fractional-order higher-dimensional multicavity chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304345
    DOI: 10.1016/j.chaos.2019.109488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919304345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Mengyao & Sun, Kehui & Liu, Wenhao & He, Shaobo, 2018. "A hyperchaotic map with grid sinusoidal cavity," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 107-117.
    2. Li, Chunguang & Chen, Guanrong, 2004. "Chaos and hyperchaos in the fractional-order Rössler equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 55-61.
    3. Manohar Kumar & Antti Laitinen & Pertti Hakonen, 2018. "Unconventional fractional quantum Hall states and Wigner crystallization in suspended Corbino graphene," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. He, Shaobo & Banerjee, Santo & Sun, Kehui, 2018. "Can derivative determine the dynamics of fractional-order chaotic system?," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 14-22.
    5. Peng, Dong & Sun, Kehui & He, Shaobo & Alamodi, Abdulaziz O.A., 2019. "What is the lowest order of the fractional-order chaotic systems to behave chaotically?," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 163-170.
    6. Khennaoui, Amina-Aicha & Ouannas, Adel & Bendoukha, Samir & Grassi, Giuseppe & Lozi, René Pierre & Pham, Viet-Thanh, 2019. "On fractional–order discrete–time systems: Chaos, stabilization and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 150-162.
    7. J. Jagan Mohan & G. V. S. R. Deekshitulu, 2012. "Fractional Order Difference Equations," International Journal of Differential Equations, Hindawi, vol. 2012, pages 1-11, November.
    8. He, Shaobo & Sun, Kehui & Wang, Huihai, 2016. "Multivariate permutation entropy and its application for complexity analysis of chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 812-823.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Y.D. & Zhang, W. & Zhang, Y.F. & Bi, Q.S., 2024. "Bursting oscillations in coupling Mathieu-van der Pol oscillator under parametric excitation," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Tareq Hamadneh & Souad Bensid Ahmed & Hassan Al-Tarawneh & Omar Alsayyed & Gharib Mousa Gharib & Maha S. Al Soudi & Abderrahmane Abbes & Adel Ouannas, 2023. "The New Four-Dimensional Fractional Chaotic Map with Constant and Variable-Order: Chaos, Control and Synchronization," Mathematics, MDPI, vol. 11(20), pages 1-19, October.
    3. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Amina-Aicha Khennaoui & Adel Ouannas & Shaher Momani & Othman Abdullah Almatroud & Mohammed Mossa Al-Sawalha & Salah Mahmoud Boulaaras & Viet-Thanh Pham, 2022. "Special Fractional-Order Map and Its Realization," Mathematics, MDPI, vol. 10(23), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Shuang & Wang, Xingyuan, 2021. "Simple estimation method for the largest Lyapunov exponent of continuous fractional-order differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    2. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    3. Gu, Shuangquan & He, Shaobo & Wang, Huihai & Du, Baoxiang, 2021. "Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Ouannas, Adel & Khennaoui, Amina-Aicha & Odibat, Zaid & Pham, Viet-Thanh & Grassi, Giuseppe, 2019. "On the dynamics, control and synchronization of fractional-order Ikeda map," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 108-115.
    5. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    6. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    7. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    8. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    9. Zheng, Yongai & Ji, Zhilin, 2016. "Predictive control of fractional-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 307-313.
    10. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Gao, Xin & Yu, Juebang, 2005. "Synchronization of two coupled fractional-order chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 141-145.
    12. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou & Chen, Wen-Chin & Lin, Kuang-Tai & Kang, Yuan, 2008. "Chaos in the Newton–Leipnik system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 98-103.
    13. Peng, Guojun & Jiang, Yaolin & Chen, Fang, 2008. "Generalized projective synchronization of fractional order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3738-3746.
    14. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    15. Silva-Juárez, Alejandro & Tlelo-Cuautle, Esteban & de la Fraga, Luis Gerardo & Li, Rui, 2021. "Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    16. Xu, Fei & Lai, Yongzeng & Shu, Xiao-Bao, 2018. "Chaos in integer order and fractional order financial systems and their synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 125-136.
    17. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    18. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    19. Lu, Jun Guo, 2006. "Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 107-118.
    20. Deepika, Deepika & Kaur, Sandeep & Narayan, Shiv, 2018. "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 196-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.