IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i3p685-688.html

A note on the fractional-order Chen system

Author

Listed:
  • Lu, Jun Guo
  • Chen, Guanrong

Abstract

In this paper we numerically investigate the chaotic behaviors of the fractional-order Chen system. A striking finding is that the lowest order for this system to have chaos is 0.3, which is the lowest-order chaotic system among all the found chaotic systems to date.

Suggested Citation

  • Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:3:p:685-688
    DOI: 10.1016/j.chaos.2005.04.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905003590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.04.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chunguang & Chen, Guanrong, 2004. "Chaos and hyperchaos in the fractional-order Rössler equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 55-61.
    2. Laskin, Nick, 2000. "Fractional market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 482-492.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    2. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    3. Wang, Fei & Yang, Yongqing & Hu, Manfeng & Xu, Xianyun, 2015. "Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 134-143.
    4. Lu, Jun Guo, 2006. "Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 519-525.
    5. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou, 2007. "Chaos in a new system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1203-1212.
    6. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2008. "Synchronization of chaotic fractional-order systems via active sliding mode controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 57-70.
    7. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou & Chen, Wen-Chin & Lin, Kuang-Tai & Kang, Yuan, 2008. "Chaos in the Newton–Leipnik system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 98-103.
    8. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    9. Sharma, Vivek & Shukla, Manoj & Sharma, B.B., 2018. "Unknown input observer design for a class of fractional order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 96-107.
    10. Lu, Jun Guo, 2006. "Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 107-118.
    11. Huang, Xiuqi & Wang, Xiangjun, 2021. "Regularity of fractional stochastic convolution and its application to fractional stochastic chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    12. Chen, Juhn-Horng & Chen, Wei-Ching, 2008. "Chaotic dynamics of the fractionally damped van der Pol equation," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 188-198.
    13. Lu, Jun Guo, 2005. "Chaotic dynamics and synchronization of fractional-order Arneodo’s systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1125-1133.
    14. Ge, Zheng-Ming & Ou, Chan-Yi, 2008. "Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 705-717.
    15. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    16. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    17. Afzaal Mubashir Hayat & Muhammad Bilal Riaz & Muhammad Abbas & Moataz Alosaimi & Adil Jhangeer & Tahir Nazir, 2024. "Numerical Solution to the Time-Fractional Burgers–Huxley Equation Involving the Mittag-Leffler Function," Mathematics, MDPI, vol. 12(13), pages 1-22, July.
    18. Deshpande, Amey S. & Daftardar-Gejji, Varsha, 2017. "On disappearance of chaos in fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 119-126.
    19. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    20. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:3:p:685-688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.