IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v166y2023ics0960077922011043.html
   My bibliography  Save this article

Social influence or risk perception? A mathematical model of self-protection against asymptomatic infection in multilayer network

Author

Listed:
  • Huang, He
  • Xu, Yang
  • Xing, Jingli
  • Shi, Tianyu

Abstract

Social influence and risk perception are important to drive the adoption of self-protective behaviors among people during an epidemic outbreak. It is interesting to know whether people should have more belief in social influence or in risk perception when they are faced with an asymptomatic infection. To explore the problem, we develop an extended epidemic model and apply it in a multilayer network topology. It is found that both social influence and risk perception can increase the density of self-protection and reduce the density of infections, but their impacts on the epidemic threshold are different. Specifically, risk perception is unable to affect the epidemic threshold, while social influence can increase the epidemic threshold only if its strength is larger than its own threshold. However, when the epidemic infectivity is very high and the epidemic is ineradicable by self-protection, increasing belief in social influence may instead lead to more infections. The contrary results not only reveal the different mechanisms of social influence and risk perception in hindering an epidemic, but also provide practical implications on the belief distribution between them.

Suggested Citation

  • Huang, He & Xu, Yang & Xing, Jingli & Shi, Tianyu, 2023. "Social influence or risk perception? A mathematical model of self-protection against asymptomatic infection in multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011043
    DOI: 10.1016/j.chaos.2022.112925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922011043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheryl Le Chang & Mahendra Piraveenan & Mikhail Prokopenko, 2019. "The Effects of Imitation Dynamics on Vaccination Behaviours in SIR-Network Model," IJERPH, MDPI, vol. 16(14), pages 1-31, July.
    2. Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    3. Silva, Petrônio C.L. & Batista, Paulo V.C. & Lima, Hélder S. & Alves, Marcos A. & Guimarães, Frederico G. & Silva, Rodrigo C.P., 2020. "COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    5. Chen, Yahong & Huang, He, 2022. "Modeling the impacts of contact tracing on an epidemic with asymptomatic infection," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    6. Ravi Bapna & Akhmed Umyarov, 2015. "Do Your Online Friends Make You Pay? A Randomized Field Experiment on Peer Influence in Online Social Networks," Management Science, INFORMS, vol. 61(8), pages 1902-1920, August.
    7. Hongbin Cai & Yuyu Chen & Hanming Fang, 2009. "Observational Learning: Evidence from a Randomized Natural Field Experiment," American Economic Review, American Economic Association, vol. 99(3), pages 864-882, June.
    8. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Wu, Qingchu & Chen, Shufang, 2022. "Coupled simultaneous evolution of disease and information on multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Huang, He & Chen, Yahong & Yan, Zhijun, 2021. "Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    11. Kejriwal, Saransh & Sheth, Sarjan & Silpa, P.S. & Sarkar, Sumit & Guha, Apratim, 2022. "Attaining herd immunity to a new infectious disease through multi-stage policies incentivising voluntary vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    12. Chen, Xiaolong & Gong, Kai & Wang, Ruijie & Cai, Shimin & Wang, Wei, 2020. "Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    13. Mulawa, Marta & Yamanis, Thespina J. & Hill, Lauren M. & Balvanz, Peter & Kajula, Lusajo J. & Maman, Suzanne, 2016. "Evidence of social network influence on multiple HIV risk behaviors and normative beliefs among young Tanzanian men," Social Science & Medicine, Elsevier, vol. 153(C), pages 35-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Xuelian & Xiong, Fei & Pan, Shirui & Chen, Hongshu & Wu, Jia & Wang, Liang, 2023. "How heterogeneous social influence acts on human decision-making in online social networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kabir, KM Ariful & Chowdhury, Atiqur & Tanimoto, Jun, 2021. "An evolutionary game modeling to assess the effect of border enforcement measures and socio-economic cost: Export-importation epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Kabir, K.M. Ariful & Tanimoto, Jun, 2021. "The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    4. Gandal, Neil & Bar-Gill, Sagit, 2017. "Online Exploration, Content Choice & Echo Chambers: An Experiment," CEPR Discussion Papers 11909, C.E.P.R. Discussion Papers.
    5. Chen, Yahong & Huang, He, 2022. "Modeling the impacts of contact tracing on an epidemic with asymptomatic infection," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    6. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The interplay of behaviors and attitudes in public goods game considering environmental investment," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    7. Shan Huang & Sinan Aral & Yu Jeffrey Hu & Erik Brynjolfsson, 2020. "Social Advertising Effectiveness Across Products: A Large-Scale Field Experiment," Marketing Science, INFORMS, vol. 39(6), pages 1142-1165, November.
    8. Ariful Kabir, K.M. & Tanimoto, Jun, 2021. "A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    9. Kumar, Viney & Bhattacharyya, Samit, 2023. "Nonlinear effect of sentiments and opinion sharing on vaccination decision in face of an outbreak: A multiplex network approach," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Hong, Xiao & Han, Yuexing & Wang, Bing, 2023. "Impacts of detection and contact tracing on the epidemic spread in time-varying networks," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    11. Johannes Loh, 2022. "Selection, Consumption, and New Music Exploration in an Online Social Network: A Dyadic Approach," CESifo Working Paper Series 10120, CESifo.
    12. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    13. Shao, Qi & Han, Dun, 2022. "Epidemic spreading in metapopulation networks with heterogeneous mobility rates," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    14. Kabir, K.M. Ariful, 2021. "How evolutionary game could solve the human vaccine dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Ruomeng Cui & Dennis J. Zhang & Achal Bassamboo, 2019. "Learning from Inventory Availability Information: Evidence from Field Experiments on Amazon," Management Science, INFORMS, vol. 65(3), pages 1216-1235, March.
    16. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    17. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    18. Fishman, Arthur & Fishman, Ram & Gneezy, Uri, 2019. "A tale of two food stands: Observational learning in the field," Journal of Economic Behavior & Organization, Elsevier, vol. 159(C), pages 101-108.
    19. Miguel Godinho de Matos & Pedro Ferreira, 2020. "The Effect of Binge-Watching on the Subscription of Video on Demand: Results from Randomized Experiments," Information Systems Research, INFORMS, vol. 31(4), pages 1337-1360, December.
    20. Gangopadhyay, Partha & Jain, Siddharth & Bakry, Walid, 2022. "In search of a rational foundation for the massive IT boom in the Australian banking industry: Can the IT boom really drive relationship banking?," International Review of Financial Analysis, Elsevier, vol. 82(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.