IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077921011395.html
   My bibliography  Save this article

Mass vaccination in a roaring pandemic

Author

Listed:
  • Gaeta, Giuseppe

Abstract

Mass vaccination produces a reduction in virus circulation, but also evolutive pressure towards the appearance of virus-resistant strains. We discuss the balance between these two effects, in particular when the mass vaccination takes place in the middle of an epidemic period.

Suggested Citation

  • Gaeta, Giuseppe, 2022. "Mass vaccination in a roaring pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077921011395
    DOI: 10.1016/j.chaos.2021.111786
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921011395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fokas, A.S. & Cuevas-Maraver, J. & Kevrekidis, P.G., 2020. "A quantitative framework for exploring exit strategies from the COVID-19 lockdown," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Sylvain Gandon & Margaret J. Mackinnon & Sean Nee & Andrew F. Read, 2001. "Imperfect vaccines and the evolution of pathogen virulence," Nature, Nature, vol. 414(6865), pages 751-756, December.
    3. Lacitignola, Deborah & Saccomandi, Giuseppe, 2021. "Managing awareness can avoid hysteresis in disease spread: an application to coronavirus Covid-19," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    2. Xinping Zhang & Yimeng Zhang & Yunchan Zhu, 2021. "COVID-19 Pandemic, Sustainability of Macroeconomy, and Choice of Monetary Policy Targets: A NK-DSGE Analysis Based on China," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    3. Deborah Lacitignola & Fasma Diele & Carmela Marangi & Angela Monti & Teresa Serini & Simonetta Vernocchi, 2023. "Effects of Vitamin D Supplementation and Degradation on the Innate Immune System Response: Insights on SARS-CoV-2," Mathematics, MDPI, vol. 11(17), pages 1-19, August.
    4. Yongdong Shi & Rongsheng Huang & Hanwen Cui, 2021. "Prediction and Analysis of Tourist Management Strategy Based on the SEIR Model during the COVID-19 Period," IJERPH, MDPI, vol. 18(19), pages 1-12, October.
    5. Lecorvaisier, Florian & Pontier, Dominique & Soubeyrand, Benoît & Fouchet, David, 2024. "Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria," Ecological Modelling, Elsevier, vol. 487(C).
    6. Zhu, Xuzhen & Liu, Yuxin & Wang, Shengfeng & Wang, Ruijie & Chen, Xiaolong & Wang, Wei, 2021. "Allocating resources for epidemic spreading on metapopulation networks," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    7. Siming You & Man Pun Wan, 2015. "A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1488-1502, August.
    8. Deborah Lacitignola, 2021. "Handling Hysteresis in a Referral Marketing Campaign with Self-Information. Hints from Epidemics," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    9. Katsikopoulos, Konstantinos V. & Şimşek, Özgür & Buckmann, Marcus & Gigerenzer, Gerd, 2022. "Transparent modeling of influenza incidence: Big data or a single data point from psychological theory?," International Journal of Forecasting, Elsevier, vol. 38(2), pages 613-619.
    10. Pires, Marcelo A. & Sampaio Filho, Cesar I.N. & Herrmann, Hans J. & Andrade, José S., 2023. "Tricritical behavior in epidemic dynamics with vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    11. Buonomo, Bruno & Giacobbe, Andrea, 2023. "Oscillations in SIR behavioural epidemic models: The interplay between behaviour and overexposure to infection," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. Khatun, Mst Sebi & Das, Samhita & Das, Pritha, 2023. "Dynamics and control of an SITR COVID-19 model with awareness and hospital bed dependency," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    13. Wang, Lianwen & Liu, Zhijun & Zhang, Xingan, 2016. "Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 47-65.
    14. Reza Yaesoubi & Shiying You & Qin Xi & Nicolas A. Menzies & Ashleigh Tuite & Yonatan H. Grad & Joshua A. Salomon, 2023. "Generating simple classification rules to predict local surges in COVID-19 hospitalizations," Health Care Management Science, Springer, vol. 26(2), pages 301-312, June.
    15. Lacitignola, Deborah & Diele, Fasma, 2021. "Using awareness to Z-control a SEIR model with overexposure: Insights on Covid-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    16. Peng, Xiao-Long & Li, Chun-Yan & Qi, Hong & Sun, Gui-Quan & Wang, Zhen & Wu, Yong-Ping, 2022. "Competition between awareness and epidemic spreading in homogeneous networks with demography," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    17. Alizon, Samuel & van Baalen, Minus, 2008. "Transmission–virulence trade-offs in vector-borne diseases," Theoretical Population Biology, Elsevier, vol. 74(1), pages 6-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077921011395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.