IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v219y2024icp50-86.html
   My bibliography  Save this article

The impact of social media advertisements and treatments on the dynamics of infectious diseases with optimal control strategies

Author

Listed:
  • Kumar, Arjun
  • Dubey, Uma S.
  • Dubey, Balram

Abstract

The dissemination of public health information through television and social media posts is essential for informing the public about the transmission of contagious diseases, which is crucial in preventing the spread of various infectious diseases. In this paper, we propose a non-linear mathematical model to assess the effect of advertisements through social media in creating awareness and limiting treatment on spreading infectious diseases. These initiatives may alter population behaviour and divide the susceptible population into subgroups. In addition, to comprehend these dynamics better, we use half-saturation constant rates for media coverage and treatment. The model’s well-posedness and feasibility are evaluated. The possible biological equilibrium points are calculated. Local and global stability are carried out. The objective of our study is to produce the model’s bifurcation. Transcritical, Saddle–node, Hopf bifurcation of codimension 1 and Cusp, Generalized-Hopf (Bautin), and Bogdanov–Takens (BT) bifurcation of codimension 2 are studied for this purpose. Due to the limited medical resources and supply efficiency, the model exhibits backward bifurcation, resulting in bistability. Moreover, the occurrence condition for stability and direction of Hopf bifurcation is discussed. This model study demonstrates that the system is significantly influenced by the pace with which awareness programmes are implemented and that raising this value above a threshold may result in continuous oscillation. Sensitivity analysis employs the normalized forward sensitivity index of the basic reproduction number to provide a comprehensive understanding of the effect of various parameters on accelerating and limiting disease spread. Further, the minimum possible cost is determined by formulating an optimal control system based on sensitivity analysis and applying Pontryagin’s maximum principle. Methods of cost-effectiveness, such as ACER and ICER, are used to determine the most cost-effective control intervention strategy among all the strategies. Numerical simulations have been done to support all theoretical findings.

Suggested Citation

  • Kumar, Arjun & Dubey, Uma S. & Dubey, Balram, 2024. "The impact of social media advertisements and treatments on the dynamics of infectious diseases with optimal control strategies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 50-86.
  • Handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:50-86
    DOI: 10.1016/j.matcom.2023.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423005220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:50-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.