IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v366y2020ics0096300319307246.html
   My bibliography  Save this article

The impact of the media awareness and optimal strategy on the prevalence of tuberculosis

Author

Listed:
  • Das, Dhiraj Kumar
  • Khajanchi, Subhas
  • Kar, T.K.

Abstract

In this present study, we propose and analyze a mathematical model of tuberculosis (TB) transmission considering social awareness effects during an epidemic. Possible equilibrium points of the model are investigated, and their stability criterion is discussed. Basic reproduction number R0 of the model is obtained through the next-generation matrix method. It has been shown that the infection-free equilibrium is locally stable when R0 < 1 and unstable for R0 > 1. The global asymptotic stability of the endemic equilibrium P* is verified by constructing a suitable Lyapunov function. The possibility of two endemic equilibria when R0 < 1 urges the system through backward bifurcation at R0=1 also verified using center manifold theory. The media awareness parameters influence the occurrence of backward bifurcation. An optimal control problem is framed considering a media intervention parameter u(t) as a control variable. The existence and characterization of the optimal solution to the problem solved analytically. Optimal media control strategy with accessible media intervention cost gradually reduce the prevalence of the disease. In addition to our analytical results, several numerical simulations are also performed to make the analysis more significant. A short discussion on the media guided transmission characteristic of the disease, obtained from our investigation is conducted at last.

Suggested Citation

  • Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "The impact of the media awareness and optimal strategy on the prevalence of tuberculosis," Applied Mathematics and Computation, Elsevier, vol. 366(C).
  • Handle: RePEc:eee:apmaco:v:366:y:2020:i:c:s0096300319307246
    DOI: 10.1016/j.amc.2019.124732
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319307246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khajanchi, Subhas, 2018. "Modeling the dynamics of glioma-immune surveillance," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 108-118.
    2. Liu, Wenbin & Zheng, Qiben, 2015. "A stochastic SIS epidemic model incorporating media coverage in a two patch setting," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 160-168.
    3. Khajanchi, Subhas & Das, Dhiraj Kumar & Kar, Tapan Kumar, 2018. "Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 52-71.
    4. Kar, T.K. & Nandi, Swapan Kumar & Jana, Soovoojeet & Mandal, Manotosh, 2019. "Stability and bifurcation analysis of an epidemic model with the effect of media," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 188-199.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Dhiraj Kumar & Kar, T.K., 2021. "Global dynamics of a tuberculosis model with sensitivity of the smear microscopy," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Lacitignola, Deborah & Diele, Fasma, 2021. "Using awareness to Z-control a SEIR model with overexposure: Insights on Covid-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Bandekar, Shraddha Ramdas & Ghosh, Mini, 2022. "A co-infection model on TB - COVID-19 with optimal control and sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 1-31.
    4. Khatun, Mst Sebi & Das, Samhita & Das, Pritha, 2023. "Dynamics and control of an SITR COVID-19 model with awareness and hospital bed dependency," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Noor Alkhateeb & Farag Sallabi & Saad Harous & Mamoun Awad, 2022. "A Study on Predicting the Outbreak of COVID-19 in the United Arab Emirates: A Monte Carlo Simulation Approach," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    6. Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
    7. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    8. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Lacitignola, Deborah & Saccomandi, Giuseppe, 2021. "Managing awareness can avoid hysteresis in disease spread: an application to coronavirus Covid-19," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Kumar Das, Dhiraj & Khatua, Anupam & Kar, T.K. & Jana, Soovoojeet, 2021. "The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India," Applied Mathematics and Computation, Elsevier, vol. 404(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "Transmission dynamics of tuberculosis with multiple re-infections," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
    3. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Fatima Sulayman & Farah Aini Abdullah & Mohd Hafiz Mohd, 2021. "An SVEIRE Model of Tuberculosis to Assess the Effect of an Imperfect Vaccine and Other Exogenous Factors," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    5. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    6. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    7. Ndii, Meksianis Z. & Adi, Yudi Ari, 2021. "Understanding the effects of individual awareness and vector controls on malaria transmission dynamics using multiple optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    8. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    9. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. Khajanchi, Subhas & Nieto, Juan J., 2019. "Mathematical modeling of tumor-immune competitive system, considering the role of time delay," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 180-205.
    11. Berrhazi, Badreddine & El Fatini, Mohamed & Lahrouz, Aadil & Settati, Adel & Taki, Regragui, 2018. "A stochastic SIRS epidemic model with a general awareness-induced incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 968-980.
    12. Lacitignola, Deborah & Saccomandi, Giuseppe, 2021. "Managing awareness can avoid hysteresis in disease spread: an application to coronavirus Covid-19," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    13. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Berrhazi, Badr-eddine & El Fatini, Mohamed & Laaribi, Aziz & Pettersson, Roger & Taki, Regragui, 2017. "A stochastic SIRS epidemic model incorporating media coverage and driven by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 60-68.
    15. Yassine Sabbar & Mehmet Yavuz & Fatma Özköse, 2022. "Infection Eradication Criterion in a General Epidemic Model with Logistic Growth, Quarantine Strategy, Media Intrusion, and Quadratic Perturbation," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    16. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Zhang, Yan & Fan, Kuangang & Gao, Shujing & Liu, Yingfen & Chen, Shihua, 2019. "Ergodic stationary distribution of a stochastic SIRS epidemic model incorporating media coverage and saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 671-685.
    18. Giovanni Dieguez & Cristiane Batistela & José R. C. Piqueira, 2023. "Controlling COVID-19 Spreading: A Three-Level Algorithm," Mathematics, MDPI, vol. 11(17), pages 1-39, September.
    19. Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    20. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:366:y:2020:i:c:s0096300319307246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.