IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v231y2025icp160-184.html
   My bibliography  Save this article

Hopf-Hopf bifurcation and hysteresis in a COVID-19 transmission model implementing vaccination induced recovery and a modified Holling type-III treatment response

Author

Listed:
  • Devi, Arpita
  • Gupta, Praveen Kumar

Abstract

In times where treatment methods are overwhelmed and have reached a saturation state, it is necessary to examine the propagation patterns of COVID-19 to assist in the decision-making process. In light of its practical significance, this paper proposes a dynamical model while implementing vaccination of susceptibles and a modified Holling type - III treatment response in presence of waning immunity. The susceptible population is assumed to be vaccinated and are transferred to the recovered class. The model also accounts for the cases of imperfect vaccination resulting in the relapse of those individuals. To have a better comprehension of the new model, the non-negativity and boundedness of its solutions are studied. The model shows the presence of a maximum of three endemic equilibria along with a disease-free equilibrium. Transcritical bifurcation is evident for basic reproduction number greater than unity and there is the occurrence of Hopf bifurcation in the system via periodic oscillations. The direction of the Hopf bifurcation is supercritical and the unstable oscillations stabilize when the transmission rate increases. Formation of endemic bubbles in the system suggests the presence of Hopf-Hopf bifurcation. The model exhibits the phenomenon of forward hysteresis owing to the multistability of the endemic equilibria. Sensitivity analysis and data fitting illustrate the practical validity of the model along with numerical simulations. Based on these findings, the modified saturated treatment response is deemed valuable over the traditional response due to its practical relevance in the context of modern healthcare. With significant advancements in infrastructure, the limitations on medical resources are less pronounced, offering clearer insights into the evolving dynamics of COVID-19.

Suggested Citation

  • Devi, Arpita & Gupta, Praveen Kumar, 2025. "Hopf-Hopf bifurcation and hysteresis in a COVID-19 transmission model implementing vaccination induced recovery and a modified Holling type-III treatment response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 231(C), pages 160-184.
  • Handle: RePEc:eee:matcom:v:231:y:2025:i:c:p:160-184
    DOI: 10.1016/j.matcom.2024.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424004816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khajanchi, Subhas & Das, Dhiraj Kumar & Kar, Tapan Kumar, 2018. "Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 52-71.
    2. Isra Al-Shbeil & Noureddine Djenina & Ali Jaradat & Abdallah Al-Husban & Adel Ouannas & Giuseppe Grassi, 2023. "A New COVID-19 Pandemic Model including the Compartment of Vaccinated Individuals: Global Stability of the Disease-Free Fixed Point," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    3. Nadim, Sk Shahid & Ghosh, Indrajit & Chattopadhyay, Joydev, 2021. "Short-term predictions and prevention strategies for COVID-19: A model-based study," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Fatima Sulayman & Farah Aini Abdullah & Mohd Hafiz Mohd, 2021. "An SVEIRE Model of Tuberculosis to Assess the Effect of an Imperfect Vaccine and Other Exogenous Factors," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    3. Liu, Tongtao & Zhang, Yongping, 2024. "Tracking problem of the Julia set for the SIS model with saturated treatment function under noise," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    4. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    6. Huang, Song & Liu, Zhijun & Wang, Lianwen, 2024. "Backward bifurcation and optimal control problem for a tuberculosis model incorporating LTBI detectivity and exogenous reinfection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1104-1123.
    7. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "Transmission dynamics of tuberculosis with multiple re-infections," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Das, Saduri & Srivastava, Prashant K. & Biswas, Pankaj, 2025. "The role of social media in a tuberculosis compartmental model: Exploring Hopf-bifurcation and nonlinear oscillations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 230(C), pages 323-349.
    9. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    11. Giovanni Dieguez & Cristiane Batistela & José R. C. Piqueira, 2023. "Controlling COVID-19 Spreading: A Three-Level Algorithm," Mathematics, MDPI, vol. 11(17), pages 1-39, September.
    12. Yang, Bo & Yu, Zhenhua & Cai, Yuanli, 2022. "The impact of vaccination on the spread of COVID-19: Studying by a mathematical model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    13. Das, Dhiraj Kumar & Kar, T.K., 2021. "Global dynamics of a tuberculosis model with sensitivity of the smear microscopy," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Qiuyun Li & Fengna Wang, 2023. "An Epidemiological Model for Tuberculosis Considering Environmental Transmission and Reinfection," Mathematics, MDPI, vol. 11(11), pages 1-17, May.
    15. Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
    16. Samui, Piu & Mondal, Jayanta & Khajanchi, Subhas, 2020. "A mathematical model for COVID-19 transmission dynamics with a case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Svetozar Margenov & Nedyu Popivanov & Iva Ugrinova & Tsvetan Hristov, 2023. "Differential and Time-Discrete SEIRS Models with Vaccination: Local Stability, Validation and Sensitivity Analysis Using Bulgarian COVID-19 Data," Mathematics, MDPI, vol. 11(10), pages 1-26, May.
    18. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "The impact of the media awareness and optimal strategy on the prevalence of tuberculosis," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    19. Kar, T.K. & Nandi, Swapan Kumar & Jana, Soovoojeet & Mandal, Manotosh, 2019. "Stability and bifurcation analysis of an epidemic model with the effect of media," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 188-199.
    20. Das, Riya & Das, Dhiraj Kumar & Kar, Tapan Kumar, 2024. "Qualitative analysis of TB transmission dynamics considering both the age since latency and relapse," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 939-967.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:231:y:2025:i:c:p:160-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.