IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v141y2020ics0960077920308183.html
   My bibliography  Save this article

Optimization of mobile individuals promotes cooperation in social dilemmas

Author

Listed:
  • Li, Wen-Jing
  • Jiang, Luo-Luo
  • Chen, Zhi
  • Perc, Matjaž
  • Slavinec, Mitja

Abstract

We study how mobile individuals affect the evolution of cooperation in social dilemmas. In doing so, we consider two types of players. The traditional type simply copies the most successful strategy in its neighborhood in order to improve its future payoff, while the advantageous type moves away in the hope of settling in a better community. We show that the introduction of the advantageous type leads to larger and more compact cooperative clusters in the prisoner’s dilemma game. This in turn facilitates the evolutionary stability of cooperation even under adverse conditions that are characterized by high temptations to defect. We also verify that the average payoff of a community unit remains proportional to the number of cooperators in this community, which hence indicates that the players pursuing mobility to attain a competitive advantage also foster cooperation in their new communities. Another way to communicate this result in the light of the costs associated with moving is to say that optimal mobility, such that yields higher payoffs to the individual who moved and the community as a whole, is similar to the optimization of the allocation of limited resources. We thus hope that these results will shed new light on how to effectively allocate resources and how to optimize mobility for optimal cooperation.

Suggested Citation

  • Li, Wen-Jing & Jiang, Luo-Luo & Chen, Zhi & Perc, Matjaž & Slavinec, Mitja, 2020. "Optimization of mobile individuals promotes cooperation in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920308183
    DOI: 10.1016/j.chaos.2020.110425
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Liwen & He, Nanrong & Weng, Qifeng & Chen, Xiaojie & Perc, Matjaž, 2020. "Rewarding endowments lead to a win-win in the evolution of public cooperation and the accumulation of common resources," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Alexander Ehlert & Martin Kindschi & René Algesheimer & Heiko Rauhut, 2020. "Human social preferences cluster and spread in the field," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(37), pages 22787-22792, September.
    3. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    4. Szolnoki, Attila & Chen, Xiaojie, 2020. "Blocking defector invasion by focusing on the most successful partner," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    5. Li, Zhi & Deng, Chuang & Suh, Il Hong, 2015. "Network topology control strategy based on spatial evolutionary public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 16-23.
    6. Wes Maciejewski & Feng Fu & Christoph Hauert, 2014. "Evolutionary Game Dynamics in Populations with Heterogenous Structures," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
    7. David Melamed & Ashley Harrell & Brent Simpson, 2018. "Cooperation, clustering, and assortative mixing in dynamic networks," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(5), pages 951-956, January.
    8. Dai, Xiangfeng & Li, Xuelong & Gutiérrez, Ricardo & Guo, Hao & Jia, Danyang & Perc, Matjaž & Manshour, Pouya & Wang, Zhen & Boccaletti, Stefano, 2020. "Explosive synchronization in populations of cooperative and competitive oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Li, Wen-Jing & Jiang, Luo-Luo & Perc, Matjaž, 2021. "A limited mobility of minorities facilitates cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    10. Abdullah Almaatouq & Alejandro Noriega-Campero & Abdulrahman Alotaibi & P. M. Krafft & Mehdi Moussaid & Alex Pentland, 2020. "Adaptive social networks promote the wisdom of crowds," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(21), pages 11379-11386, May.
    11. Zhang, W. & Choi, C.W. & Li, Y.S. & Xu, C. & Hui, P.M., 2017. "Co-evolving prisoner’s dilemma: Performance indicators and analytic approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 183-194.
    12. Te Wu & Long Wang & Feng Fu, 2017. "Coevolutionary dynamics of phenotypic diversity and contingent cooperation," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    13. Li, Yan & Ye, Hang, 2015. "Effect of migration based on strategy and cost on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 156-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chaoqian & Huang, Chaochao & Pan, Qiuhui & He, Mingfeng, 2022. "Modeling the social dilemma of involution on a square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Duh, Maja & Gosak, Marko & Perc, Matjaž, 2021. "Public goods games on random hyperbolic graphs with mixing," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Wang, Chaoqian & Huang, Chaochao, 2022. "Between local and global strategy updating in public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    3. Jiang, Luo-Luo & Gao, Jian & Chen, Zhi & Li, Wen-Jing & Kurths, Jürgen, 2021. "Reducing the bystander effect via decreasing group size to solve the collective-risk social dilemma," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    5. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    6. Xiaojie Chen & Attila Szolnoki, 2018. "Punishment and inspection for governing the commons in a feedback-evolving game," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-15, July.
    7. Quan, Ji & Yang, Xiukang & Wang, Xianjia, 2018. "Spatial public goods game with continuous contributions based on Particle Swarm Optimization learning and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 973-983.
    8. Fan, Ruguo & Zhang, Yingqing & Luo, Ming & Zhang, Hongjuan, 2017. "Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 454-463.
    9. Zhang, Lan & Pan, Jianchen & Huang, Changwei, 2023. "Effect of mixed random and directional migration on cooperation in the spatial prisoner’s dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Bin Wu & Lei Zhou, 2018. "Individualised aspiration dynamics: Calculation by proofs," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-15, September.
    11. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2021. "Small fraction of selective cooperators can elevate general wellbeing significantly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    12. Zhenghong Wu & Huan Huang & Qinghu Liao, 2021. "The study on the role of dedicators on promoting cooperation in public goods game," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-17, September.
    13. Sarkar, Bijan, 2018. "Moran-evolution of cooperation: From well-mixed to heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 319-334.
    14. Chen, Wei & Zhu, Qianlong & Wu, Te, 2023. "Unfairness promotes the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    15. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Group-size dependent synergy in heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    16. Mohammad Salahshour, 2021. "Freedom to choose between public resources promotes cooperation," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-15, February.
    17. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    18. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    19. Boyu Zhang & Cong Li & Yi Tao, 2016. "Evolutionary Stability and the Evolution of Cooperation on Heterogeneous Graphs," Dynamic Games and Applications, Springer, vol. 6(4), pages 567-579, December.
    20. Zheng, Junjun & He, Yujie & Ren, Tianyu & Huang, Yongchao, 2022. "Evolution of cooperation in public goods games with segregated networks and periodic invasion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920308183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.