IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v432y2015icp16-23.html
   My bibliography  Save this article

Network topology control strategy based on spatial evolutionary public goods game

Author

Listed:
  • Li, Zhi
  • Deng, Chuang
  • Suh, Il Hong

Abstract

It is often the case that rational individuals will adjust their connectivity in commercial or social activities for maximizing their payoffs. In this process, we can observe that individuals always gather around a leader or a competitive individual who can bring them more benefits. Inspired by this, we propose a strategy that impels nodes of network to connect with a specific node that we have specified with the perspective of spatial evolutionary public goods game. Thus a node is specified and given a larger enhancement factor which reflects his advantage over others. Then we employ a payoff-oriented preferential rewire strategy that individual will sever a neighbor who provides him with the lowest benefit and then link others randomly. The results illustrate that this strategy not only ensures the promotion of cooperation but also increases the degree of the specified node. Furthermore, we analyze the effect of two relevant parameters: enhancement factor and rewire frequency. We find that if the control strategy expects to work effectively, these two parameters have to ensure an evolution environment where cooperators can prevail defectors. We also conclude that a relatively low rewire frequency contributes to increasing the degree of the specified node. Meanwhile we attempt to present our interpretations for these phenomena.

Suggested Citation

  • Li, Zhi & Deng, Chuang & Suh, Il Hong, 2015. "Network topology control strategy based on spatial evolutionary public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 16-23.
  • Handle: RePEc:eee:phsmap:v:432:y:2015:i:c:p:16-23
    DOI: 10.1016/j.physa.2015.02.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711500237X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.02.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bin Wu & Da Zhou & Feng Fu & Qingjun Luo & Long Wang & Arne Traulsen, 2010. "Evolution of Cooperation on Stochastic Dynamical Networks," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-7, June.
    2. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    3. C. Y. Zhang & J. L. Zhang & G. M. Xie & L. Wang, 2011. "Coevolving agent strategies and network topology for the public goods games," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 80(2), pages 217-222, March.
    4. Gao, Jia & Li, Zhi & Wu, Te & Wang, Long, 2010. "Diversity of contribution promotes cooperation in public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3166-3171.
    5. Francisco C Santos & Jorge M Pacheco & Tom Lenaerts, 2006. "Cooperation Prevails When Individuals Adjust Their Social Ties," PLOS Computational Biology, Public Library of Science, vol. 2(10), pages 1-8, October.
    6. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chaoqian & Huang, Chaochao, 2022. "Between local and global strategy updating in public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Quan, Ji & Yang, Xiukang & Wang, Xianjia, 2018. "Spatial public goods game with continuous contributions based on Particle Swarm Optimization learning and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 973-983.
    3. Fan, Ruguo & Zhang, Yingqing & Luo, Ming & Zhang, Hongjuan, 2017. "Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 454-463.
    4. Li, Wen-Jing & Jiang, Luo-Luo & Chen, Zhi & Perc, Matjaž & Slavinec, Mitja, 2020. "Optimization of mobile individuals promotes cooperation in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Wei, Shanting & Zhang, Zhuo & Ke, Ginger Y. & Chen, Xintong, 2019. "The more cooperation, the better? Optimizing enterprise cooperative strategy in collaborative innovation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    6. Zhao, Jinhua & Wang, Xianjia & Niu, Lei & Gu, Cuiling, 2021. "Environmental feedback and cooperation in climate change dilemma," Applied Mathematics and Computation, Elsevier, vol. 397(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    2. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    3. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Yang, Guoli & Zhu, Cheng & Zhang, Weiming, 2019. "Adaptive and probabilistic strategy evolution in dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 99-110.
    5. Yang, Zhihu & Li, Zhi & Wang, Long, 2020. "Evolution of cooperation in a conformity-driven evolving dynamic social network," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    6. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    7. Wes Maciejewski & Feng Fu & Christoph Hauert, 2014. "Evolutionary Game Dynamics in Populations with Heterogenous Structures," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
    8. Shuhua Chang & Zhipeng Zhang & Yu Li & Yu E Wu & Yunya Xie, 2018. "Investment preference promotes cooperation in spatial public goods game," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
    9. Guo, Yujie & Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2023. "Network adaption based on environment feedback promotes cooperation in co-evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    10. Faqi Du & Feng Fu, 2011. "Partner Selection Shapes the Strategic and Topological Evolution of Cooperation," Dynamic Games and Applications, Springer, vol. 1(3), pages 354-369, September.
    11. Changbing Tang & Zhen Wang & Xiang Li, 2014. "Moderate Intra-Group Bias Maximizes Cooperation on Interdependent Populations," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
    12. Wang, Xiaofeng & Chen, Xiaojie & Gao, Jia & Wang, Long, 2013. "Reputation-based mutual selection rule promotes cooperation in spatial threshold public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 181-187.
    13. Zhang, Jianlei & Zhang, Chunyan & Chu, Tianguang, 2011. "The evolution of cooperation in spatial groups," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 131-136.
    14. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    15. Fan, Ruguo & Zhang, Yingqing & Luo, Ming & Zhang, Hongjuan, 2017. "Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 454-463.
    16. Yu, Fengyuan & Wang, Jianwei & Chen, Wei & He, Jialu, 2023. "Increased cooperation potential and risk under suppressed strategy differentiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    17. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "The impact of current and historical reputation with non-uniform change on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    18. Chen, Zhuo & Gao, Jianxi & Cai, Yunze & Xu, Xiaoming, 2011. "Evolution of cooperation among mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1615-1622.
    19. Wang, Mie & Kang, HongWei & Shen, Yong & Sun, XingPing & Chen, QingYi, 2021. "The role of alliance cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Chang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Xie, Yunya, 2018. "Cooperation is enhanced by inhomogeneous inertia in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 419-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:432:y:2015:i:c:p:16-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.