IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920306688.html
   My bibliography  Save this article

Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells

Author

Listed:
  • Naik, Parvaiz Ahmad
  • Owolabi, Kolade M.
  • Yavuz, Mehmet
  • Zu, Jian

Abstract

Mathematical models in epidemiology have been studied in the literature to understand the mechanism that underlies AIDS-related cancers, providing us with a better insight towards cancer immunity and viral oncogenesis. In this study, we propose a dynamical fractional order HIV-1 model in Caputo sense which involves the interactions between cancer cells, healthy CD4+T lymphocytes, and virus infected CD4+T lymphocytes leading to chaotic behavior. The model has been investigated for the existence and uniqueness of its solution via fixed point theory, while the unique non-negative solution remains bounded within the biologically feasible region. The stability analysis of the model is performed and the biological relevance of the equilibria is also discussed in the paper. The numerical simulations are obtained under different instances of fractional order α. It is observed that, as the fractional power decreases from ’one’ the chaotic behavior becomes more and more attractive. The existence of chaotic attractors for various species interaction has been observed in 2D and 3D cases. The time series evolution of the species showing different distributions under different fractional order α. The results show that order of the fractional derivative has a significant effect on the dynamic process.

Suggested Citation

  • Naik, Parvaiz Ahmad & Owolabi, Kolade M. & Yavuz, Mehmet & Zu, Jian, 2020. "Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306688
    DOI: 10.1016/j.chaos.2020.110272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Owolabi, Kolade M., 2018. "Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 160-169.
    2. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Naik, Parvaiz Ahmad & Zu, Jian & Ghoreishi, Mohammad, 2020. "Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    6. Sajjadi, Samaneh Sadat & Baleanu, Dumitru & Jajarmi, Amin & Pirouz, Hassan Mohammadi, 2020. "A new adaptive synchronization and hyperchaos control of a biological snap oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mangal, Shiv & Misra, O.P. & Dhar, Joydip, 2023. "Fractional-order deterministic epidemic model for the spread and control of HIV/AIDS with special reference to Mexico and India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 82-102.
    2. Attaullah, & Jan, Rashid & Yüzbaşı, Şuayip, 2021. "Dynamical behaviour of HIV Infection with the influence of variable source term through Galerkin method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Samad Noeiaghdam & Sanda Micula, 2021. "Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection," Mathematics, MDPI, vol. 9(9), pages 1-24, May.
    4. Haoxiang Tang & Mingtao Li & Xiangyu Yan & Zuhong Lu & Zhongwei Jia, 2021. "Modeling the Dynamics of Drug Spreading in China," IJERPH, MDPI, vol. 18(1), pages 1-25, January.
    5. Özköse, Fatma & Yavuz, Mehmet & Şenel, M. Tamer & Habbireeh, Rafla, 2022. "Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Atangana, Abdon & İğret Araz, Seda, 2021. "New concept in calculus: Piecewise differential and integral operators," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    7. Doungmo Goufo, Emile F., 2022. "Linear and rotational fractal design for multiwing hyperchaotic systems with triangle and square shapes," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Samad Noeiaghdam & Aliona Dreglea & Hüseyin Işık & Muhammad Suleman, 2021. "A Comparative Study between Discrete Stochastic Arithmetic and Floating-Point Arithmetic to Validate the Results of Fractional Order Model of Malaria Infection," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    4. Samad Noeiaghdam & Sanda Micula & Juan J. Nieto, 2021. "A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library," Mathematics, MDPI, vol. 9(12), pages 1-26, June.
    5. Izadi, Mohammad & Yüzbaşı, Şuayip & Adel, Waleed, 2022. "Accurate and efficient matrix techniques for solving the fractional Lotka–Volterra population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    6. Abidemi, Afeez & Owolabi, Kolade M. & Pindza, Edson, 2022. "Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    7. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Mangal, Shiv & Misra, O.P. & Dhar, Joydip, 2023. "Fractional-order deterministic epidemic model for the spread and control of HIV/AIDS with special reference to Mexico and India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 82-102.
    9. Owolabi, Kolade M., 2021. "Computational analysis of different Pseudoplatystoma species patterns the Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Karimi Rahjerdi, Bahareh & Ramamoorthy, Ramesh & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Jafari, Sajad, 2022. "Indicating the synchronization bifurcation points using the early warning signals in two case studies: Continuous and explosive synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    12. Mishra, A.M. & Purohit, S.D. & Owolabi, K.M. & Sharma, Y.D., 2020. "A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Karaagac, Berat, 2019. "A study on fractional Klein Gordon equation with non-local and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 218-229.
    14. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Ahmed, Najma & Shah, Nehad Ali & Taherifar, Somaye & Zaman, F.D., 2021. "Memory effects and of the killing rate on the tumor cells concentration for a one-dimensional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    17. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    18. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    19. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    20. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.