IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p536-d1584776.html
   My bibliography  Save this article

Numerical Analysis of Time-Fractional Cancer Models with Different Types of Net Killing Rate

Author

Listed:
  • Hami Gündoǧdu

    (Department of Mathematics, Faculty of Science, Sakarya University, Serdivan 54050, Turkey
    These authors contributed equally to this work.)

  • Hardik Joshi

    (Department of Mathematics, LJ Institute of Engineering and Technology, LJ University, Ahmedabad 382210, Gujarat, India
    These authors contributed equally to this work.)

Abstract

This study introduces a novel approach to modeling cancer tumor dynamics within a fractional framework, emphasizing the critical role of the net killing rate in determining tumor growth or decay. We explore a generalized cancer model where the net killing rate is considered across three domains: time-dependent, position-dependent, and concentration-dependent. The primary objective is to derive an analytical solution for time-fractional cancer models using the Residual Power Series Method (RPSM), a technique not previously applied in this conformable context. Traditional methods for solving fractional-order differential models face challenges such as perturbations, complex simplifications, discretization issues, and restrictive assumptions. In contrast, the RPSM overcomes these limitations by offering a robust solution that reduces both complexity and computational effort. The method provides exact analytical solutions through a convergence series and reliable numerical approximations when needed, making it a versatile tool for simulating fractional-order cancer models. Graphical representations of the approximate solutions illustrate the method’s effectiveness and applicability. The findings highlight the RPSM’s potential to advance cancer treatment strategies by providing a more precise understanding of tumor dynamics in a fractional context. This work contributes to both theoretical and practical advancements in cancer research and lays the groundwork for more accurate and efficient modeling of cancer dynamics, ultimately aiding in the development of optimal treatment strategies.

Suggested Citation

  • Hami Gündoǧdu & Hardik Joshi, 2025. "Numerical Analysis of Time-Fractional Cancer Models with Different Types of Net Killing Rate," Mathematics, MDPI, vol. 13(3), pages 1-18, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:536-:d:1584776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/536/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/536/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zulqurnain Sabir & Sahar Dirani & Sara Bou Saleh & Mohamad Khaled Mabsout & Adnène Arbi, 2024. "A Novel Radial Basis and Sigmoid Neural Network Combination to Solve the Human Immunodeficiency Virus System in Cancer Patients," Mathematics, MDPI, vol. 12(16), pages 1-13, August.
    2. Kumar, Sunil & Kumar, Ajay & Samet, Bessem & Gómez-Aguilar, J.F. & Osman, M.S., 2020. "A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Naik, Parvaiz Ahmad & Owolabi, Kolade M. & Yavuz, Mehmet & Zu, Jian, 2020. "Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Ghanbari, Behzad & Kumar, Sunil & Kumar, Ranbir, 2020. "A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    5. Juan Shen & Xiao Tu & Yuanyuan Li, 2023. "Mathematical Modeling Reveals Mechanisms of Cancer-Immune Interactions Underlying Hepatocellular Carcinoma Development," Mathematics, MDPI, vol. 11(20), pages 1-30, October.
    6. Saeed M. Ali & Ashfaque H. Bokhari & M. Yousuf & F. D. Zaman, 2014. "A Spherically Symmetric Model for the Tumor Growth," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, January.
    7. José Alberto Rodrigues, 2024. "Using Physics-Informed Neural Networks (PINNs) for Tumor Cell Growth Modeling," Mathematics, MDPI, vol. 12(8), pages 1-9, April.
    8. Salah Abuasad & Ishak Hashim & Samsul Ariffin Abdul Karim, 2019. "Modified Fractional Reduced Differential Transform Method for the Solution of Multiterm Time-Fractional Diffusion Equations," Advances in Mathematical Physics, Hindawi, vol. 2019, pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravichandran, C. & Sowbakiya, V. & Nisar, Kottakkaran Sooppy, 2022. "Study on existence and data dependence results for fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Das, Parthasakha & Das, Samhita & Das, Pritha & Rihan, Fathalla A. & Uzuntarla, Muhammet & Ghosh, Dibakar, 2021. "Optimal control strategy for cancer remission using combinatorial therapy: A mathematical model-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    6. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    7. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2021. "A practical numerical approach to solve a fractional Lotka–Volterra population model with non-singular and singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. Kumar, Ajay & Kumar, Sunil, 2022. "A study on eco-epidemiological model with fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Doungmo Goufo, Emile F., 2022. "Linear and rotational fractal design for multiwing hyperchaotic systems with triangle and square shapes," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    10. Haoxiang Tang & Mingtao Li & Xiangyu Yan & Zuhong Lu & Zhongwei Jia, 2021. "Modeling the Dynamics of Drug Spreading in China," IJERPH, MDPI, vol. 18(1), pages 1-25, January.
    11. Kumar, Ajay & Kumar, Sunil & Momani, Shaher & Hadid, Samir, 2024. "A chaos study of fractal–fractional predator–prey model of mathematical ecology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 857-888.
    12. De Angelis, Paolo & De Marchis, Roberto & Martire, Antonio Luciano & Oliva, Immacolata, 2020. "A mean-value Approach to solve fractional differential and integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Ghanizadeh, Mojtaba & Shariatpanahi, Seyed Peyman & Goliaei, Bahram & Rüegg, Curzio, 2021. "Mathematical modeling approach of cancer immunoediting reveals new insights in targeted-therapy and timing plan of cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Luo, Ziyang & Zhang, Xingdong & Wang, Shuo & Yao, Lin, 2022. "Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    15. Alberto Antonini & Valentina Anna Lia Salomoni, 2023. "Modelling Fractional Advection–Diffusion Processes via the Adomian Decomposition," Mathematics, MDPI, vol. 11(12), pages 1-30, June.
    16. Akgül, Esra Karatas & Akgül, Ali & Yavuz, Mehmet, 2021. "New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    17. Günerhan, Hatıra & Dutta, Hemen & Dokuyucu, Mustafa Ali & Adel, Waleed, 2020. "Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. Attaullah, & Jan, Rashid & Yüzbaşı, Şuayip, 2021. "Dynamical behaviour of HIV Infection with the influence of variable source term through Galerkin method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. H. Mesgarani & Y. Esmaeelzade Aghdam & A. Beiranvand & J. F. Gómez-Aguilar, 2024. "A Novel Approach to Fuzzy Based Efficiency Assessment of a Financial System," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1609-1626, April.
    20. He, Hua & Wang, Wendi, 2024. "Asymptotically periodic solutions of fractional order systems with applications to population models," Applied Mathematics and Computation, Elsevier, vol. 476(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:536-:d:1584776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.