IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v114y2018icp8-18.html
   My bibliography  Save this article

Dynamic evolutionary clustering approach based on time weight and latent attributes for collaborative filtering recommendation

Author

Listed:
  • Chen, Jianrui
  • Wei, Lidan
  • Uliji,
  • Zhang, Li

Abstract

Collaborative filtering is one of the most widely used individual recommendation algorithms. The traditional collaborative filtering recommendation algorithm takes less care of time variation, which may be inaccurate in real surroundings. A novel dynamic evolutionary clustering algorithm based on time weight and latent attributes is proposed. According to the time effect of historical information in recommendation system, forgetting curve is introduced to better grasp the recent interest of the users. To gather users with similar interest into the same cluster, item characteristics and user attributes are mined. Therefore, network model is established by introducing the forgetting function to score matrix, utilizing item characteristics and user attributes. Items and users are regarded as heterogenous nodes in network. Furthermore, a novel dynamic evolutionary clustering algorithm is adopted to divide users and items set into K clusters, and individuals with higher similarity are clustered. The preferences of users in the same cluster are similar. Then, collaborative filtering is applied in each cluster to predict the ratings. Finally, the target users are recommended predicted according to prediction ratings. Simulations show that the presented method gains better recommendation accuracy in comparison of existing algorithms through MovieLens100k, Restaurant & consumer and CiaoDVD data sets.

Suggested Citation

  • Chen, Jianrui & Wei, Lidan & Uliji, & Zhang, Li, 2018. "Dynamic evolutionary clustering approach based on time weight and latent attributes for collaborative filtering recommendation," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 8-18.
  • Handle: RePEc:eee:chsofr:v:114:y:2018:i:c:p:8-18
    DOI: 10.1016/j.chaos.2018.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918303849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Resnick & Neophytos Iacovou & Mitesh Suchak & Peter Bergstrom & John Riedl, 1994. "GroupLens: An Open Architecture for Collaborative Filtering of Netnews," Working Paper Series 165, MIT Center for Coordination Science.
    2. Wu, Jianshe & Zhang, Long & Li, Yong & Jiao, Yang, 2016. "Partition signed social networks via clustering dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 568-582.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongheng Lin & Zezhou Ye & Yingying Zhao, 2019. "OPEC: Daily Load Data Analysis Based on Optimized Evolutionary Clustering," Energies, MDPI, vol. 12(14), pages 1-17, July.
    2. Jun Wu & Yuanyuan Li & Li Shi & Liping Yang & Xiaxia Niu & Wen Zhang, 2022. "ReRec: A Divide-and-Conquer Approach to Recommendation Based on Repeat Purchase Behaviors of Users in Community E-Commerce," Mathematics, MDPI, vol. 10(2), pages 1-20, January.
    3. Wang, Zhihui & Chen, Jianrui & Li, Jiamin & Wang, Zhen, 2024. "Interest community-based recommendation via cognitive similarity and adaptive evolutionary clustering," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    4. Yonis Gulzar & Ali A. Alwan & Radhwan M. Abdullah & Abedallah Zaid Abualkishik & Mohamed Oumrani, 2023. "OCA: Ordered Clustering-Based Algorithm for E-Commerce Recommendation System," Sustainability, MDPI, vol. 15(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Charles M.C. & Ma, Paul & Wang, Charles C.Y., 2015. "Search-based peer firms: Aggregating investor perceptions through internet co-searches," Journal of Financial Economics, Elsevier, vol. 116(2), pages 410-431.
    2. Shuang-Bo Sun & Zhi-Heng Zhang & Xin-Ling Dong & Heng-Ru Zhang & Tong-Jun Li & Lin Zhang & Fan Min, 2017. "Integrating Triangle and Jaccard similarities for recommendation," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-16, August.
    3. Zhang, Peng & Song, Xiaoyu & Xue, Leyang & Gu, Ke, 2019. "A new recommender algorithm on signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 317-321.
    4. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    5. Nie, Da-Cheng & An, Ya-Hui & Dong, Qiang & Fu, Yan & Zhou, Tao, 2015. "Information filtering via balanced diffusion on bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 44-53.
    6. Sohn, Jeong Woong & Kim, Jin Ki, 2020. "Factors that influence purchase intentions in social commerce," Technology in Society, Elsevier, vol. 63(C).
    7. Zhang, Yi & Robinson, Douglas K.R. & Porter, Alan L. & Zhu, Donghua & Zhang, Guangquan & Lu, Jie, 2016. "Technology roadmapping for competitive technical intelligence," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 175-186.
    8. Molaie, Mir Majid & Lee, Wonjae, 2022. "Economic corollaries of personalized recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    9. Zhang, Peng & Wang, Duo & Xiao, Jinghua, 2017. "Improving the recommender algorithms with the detected communities in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 147-153.
    10. Zhu, Xiaoyu & Ma, Yinghong & Liu, Zhiyuan, 2018. "A novel evolutionary algorithm on communities detection in signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 938-946.
    11. Liebig, Jessica & Rao, Asha, 2016. "Predicting item popularity: Analysing local clustering behaviour of users," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 523-531.
    12. Chen, Jianrui & Wang, Hua & Wang, Lina & Liu, Weiwei, 2016. "A dynamic evolutionary clustering perspective: Community detection in signed networks by reconstructing neighbor sets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 482-492.
    13. Zhang, Jing & Peng, Qinke & Sun, Shiquan & Liu, Che, 2014. "Collaborative filtering recommendation algorithm based on user preference derived from item domain features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 66-76.
    14. Bogaert, Matthias & Lootens, Justine & Van den Poel, Dirk & Ballings, Michel, 2019. "Evaluating multi-label classifiers and recommender systems in the financial service sector," European Journal of Operational Research, Elsevier, vol. 279(2), pages 620-634.
    15. Hausmann, Ricardo & Stock, Daniel P. & Yıldırım, Muhammed A., 2022. "Implied comparative advantage," Research Policy, Elsevier, vol. 51(8).
    16. Hausmann, Ricardo & Hidalgo, Cesar A. & Stock, Daniel P. & Yildirim, Muhammed A., 2014. "Implied Comparative Advantage," Working Paper Series rwp14-003, Harvard University, John F. Kennedy School of Government.
    17. Hael Al-bashiri & Mansoor Abdullateef Abdulgabber & Awanis Romli & Hasan Kahtan, 2018. "An improved memory-based collaborative filtering method based on the TOPSIS technique," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-26, October.
    18. Ai, Jun & Cai, Yifang & Su, Zhan & Zhang, Kuan & Peng, Dunlu & Chen, Qingkui, 2022. "Predicting user-item links in recommender systems based on similarity-network resource allocation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    19. Ma, Yinghong & Zhu, Xiaoyu & Yu, Qinglin, 2019. "Clusters detection based leading eigenvector in signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1263-1275.
    20. Moradi, Parham & Ahmadian, Sajad & Akhlaghian, Fardin, 2015. "An effective trust-based recommendation method using a novel graph clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 462-481.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:114:y:2018:i:c:p:8-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.