IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v97y2012icp970-981.html
   My bibliography  Save this article

A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations

Author

Listed:
  • Kaplani, E.
  • Kaplanis, S.

Abstract

The large fluctuations observed in the daily solar radiation profiles affect highly the reliability of the PV system sizing. Increasing the reliability of the PV system requires higher installed peak power (Pm) and larger battery storage capacity (CL). This leads to increased costs, and makes PV technology less competitive. This research paper presents a new stochastic simulation model for stand-alone PV systems, developed to determine the minimum installed Pm and CL for the PV system to be energy independent. The stochastic simulation model developed, makes use of knowledge acquired from an in-depth statistical analysis of the solar radiation data for the site, and simulates the energy delivered, the excess energy burnt, the load profiles and the state of charge of the battery system for the month the sizing is applied, and the PV system performance for the entire year. The simulation model provides the user with values for the autonomy factor d, simulating PV performance in order to determine the minimum Pm and CL depending on the requirements of the application, i.e. operation with critical or non-critical loads. The model makes use of NASA’s Surface meteorology and Solar Energy database for the years 1990–2004 for various cities in Europe with a different climate. The results obtained with this new methodology indicate a substantial reduction in installed peak power and battery capacity, both for critical and non-critical operation, when compared to conventional approaches applied in PV sizing.

Suggested Citation

  • Kaplani, E. & Kaplanis, S., 2012. "A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations," Applied Energy, Elsevier, vol. 97(C), pages 970-981.
  • Handle: RePEc:eee:appene:v:97:y:2012:i:c:p:970-981
    DOI: 10.1016/j.apenergy.2011.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911008117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaplanis, S. & Kaplani, E., 2010. "Stochastic prediction of hourly global solar radiation for Patra, Greece," Applied Energy, Elsevier, vol. 87(12), pages 3748-3758, December.
    2. Thiaux, Y. & Seigneurbieux, J. & Multon, B. & Ben Ahmed, H., 2010. "Load profile impact on the gross energy requirement of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(3), pages 602-613.
    3. Mellit, A. & Kalogirou, S.A. & Shaari, S. & Salhi, H. & Hadj Arab, A., 2008. "Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system," Renewable Energy, Elsevier, vol. 33(7), pages 1570-1590.
    4. Sukamongkol, Y. & Chungpaibulpatana, S. & Ongsakul, W., 2002. "A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads," Renewable Energy, Elsevier, vol. 27(2), pages 237-258.
    5. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    6. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    7. Bartoli, B & Cuomo, V & Fontana, F & Serio, C & Silvestrini, V, 1984. "The design of photovoltaic plants: An optimization procedure," Applied Energy, Elsevier, vol. 18(1), pages 37-47.
    8. Tan, Chee Wei & Green, Tim C. & Hernandez-Aramburo, Carlos A., 2010. "A stochastic method for battery sizing with uninterruptible-power and demand shift capabilities in PV (photovoltaic) systems," Energy, Elsevier, vol. 35(12), pages 5082-5092.
    9. Chen, Shin-Guang, 2012. "An efficient sizing method for a stand-alone PV system in terms of the observed block extremes," Applied Energy, Elsevier, vol. 91(1), pages 375-384.
    10. Agha, K. R. & Sbita, M. N., 2000. "On the sizing parameters for stand-alone solar-energy systems," Applied Energy, Elsevier, vol. 65(1-4), pages 73-84, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okoye, Chiemeka Onyeka & Oranekwu-Okoye, Blessing Chioma, 2018. "Economic feasibility of solar PV system for rural electrification in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2537-2547.
    2. Kang, Byung O & Tam, Kwa-Sur, 2015. "New and improved methods to estimate day-ahead quantity and quality of solar irradiance," Applied Energy, Elsevier, vol. 137(C), pages 240-249.
    3. Li, Shuai & Ma, Hongjie & Li, Weiyi, 2017. "Typical solar radiation year construction using k-means clustering and discrete-time Markov chain," Applied Energy, Elsevier, vol. 205(C), pages 720-731.
    4. Bateer Baiyin & Kotaro Tagawa & Joaquin Gutierrez, 2020. "Techno-Economic Feasibility Analysis of a Stand-Alone Photovoltaic System for Combined Aquaponics on Drylands," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    5. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    6. Dai Cui & Fei Xu & Weichun Ge & Pengxiang Huang & Yunhai Zhou, 2020. "A Coordinated Dispatching Model Considering Generation and Operation Reserve in Wind Power-Photovoltaic-Pumped Storage System," Energies, MDPI, vol. 13(18), pages 1-24, September.
    7. Bridier, Laurent & Hernández-Torres, David & David, Mathieu & Lauret, Phillipe, 2016. "A heuristic approach for optimal sizing of ESS coupled with intermittent renewable sources systems," Renewable Energy, Elsevier, vol. 91(C), pages 155-165.
    8. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    9. Cervantes, Jairo & Choobineh, Fred, 2018. "Optimal sizing of a nonutility-scale solar power system and its battery storage," Applied Energy, Elsevier, vol. 216(C), pages 105-115.
    10. Okoye, Chiemeka Onyeka & Solyalı, Oğuz, 2017. "Optimal sizing of stand-alone photovoltaic systems in residential buildings," Energy, Elsevier, vol. 126(C), pages 573-584.
    11. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    12. Kaplani, E. & Kaplanis, S. & Mondal, S., 2018. "A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude," Renewable Energy, Elsevier, vol. 126(C), pages 933-942.
    13. Zhuoyuan Lyu & Ying Shen & Yu Zhao & Tao Hu, 2023. "Solar Radiation Prediction Based on Conformer-GLaplace-SDAR Model," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    14. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    15. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2013. "Probabilistic modelling and analysis of stand-alone hybrid power systems," Energy, Elsevier, vol. 63(C), pages 19-27.
    16. Khalilpour, Rajab & Vassallo, Anthony, 2016. "Planning and operation scheduling of PV-battery systems: A novel methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 194-208.
    17. Deng, Qianli & Jiang, Xianglin & Cui, Qingbin & Zhang, Limao, 2015. "Strategic design of cost savings guarantee in energy performance contracting under uncertainty," Applied Energy, Elsevier, vol. 139(C), pages 68-80.
    18. Haobo Shi & Yanping Xu & Baodi Ding & Jinsong Zhou & Pei Zhang, 2023. "Long-Term Solar Power Time-Series Data Generation Method Based on Generative Adversarial Networks and Sunrise–Sunset Time Correction," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    19. Tostado-Véliz, Marcos & León-Japa, Rogelio S. & Jurado, Francisco, 2021. "Optimal electrification of off-grid smart homes considering flexible demand and vehicle-to-home capabilities," Applied Energy, Elsevier, vol. 298(C).
    20. Haytham El-houari & Amine Allouhi & Shafiqur Rehman & Mahmut Sami Buker & Tarik Kousksou & Abdelmajid Jamil & Bouchta El Amrani, 2019. "Design, Simulation, and Economic Optimization of an Off-Grid Photovoltaic System for Rural Electrification," Energies, MDPI, vol. 12(24), pages 1-16, December.
    21. Raza, Syed Shabbar & Janajreh, Isam & Ghenai, Chaouki, 2014. "Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source," Applied Energy, Elsevier, vol. 136(C), pages 909-920.
    22. Eduardo Quiles & Carlos Roldán-Blay & Guillermo Escrivá-Escrivá & Carlos Roldán-Porta, 2020. "Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    23. Orozco-Gutierrez, M.L. & Ramirez-Scarpetta, J.M. & Spagnuolo, G. & Ramos-Paja, C.A., 2014. "A method for simulating large PV arrays that include reverse biased cells," Applied Energy, Elsevier, vol. 123(C), pages 157-167.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    2. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    3. Mellit, Adel & Kalogirou, Soteris A. & Drif, Mahmoud, 2010. "Application of neural networks and genetic algorithms for sizing of photovoltaic systems," Renewable Energy, Elsevier, vol. 35(12), pages 2881-2893.
    4. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    5. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    6. Mellit, A. & Benghanem, M. & Arab, A. Hadj & Guessoum, A., 2005. "An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria," Renewable Energy, Elsevier, vol. 30(10), pages 1501-1524.
    7. García-Gracia, M. & El Halabi, N. & Khodr, H.M. & Sanz, Jose Fco, 2010. "Improvement of large scale solar installation model for ground current analysis," Applied Energy, Elsevier, vol. 87(11), pages 3467-3474, November.
    8. Elma, Onur & Selamogullari, Ugur Savas, 2012. "A comparative sizing analysis of a renewable energy supplied stand-alone house considering both demand side and source side dynamics," Applied Energy, Elsevier, vol. 96(C), pages 400-408.
    9. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.
    10. Casares, F.J. & Lopez-Luque, R. & Posadillo, R. & Varo-Martinez, M., 2014. "Mathematical approach to the characterization of daily energy balance in autonomous photovoltaic solar systems," Energy, Elsevier, vol. 72(C), pages 393-404.
    11. Ren, Zhengen & Paevere, Phillip & Chen, Dong, 2019. "Feasibility of off-grid housing under current and future climates," Applied Energy, Elsevier, vol. 241(C), pages 196-211.
    12. El Halabi, N. & García-Gracia, M. & Comech, M.P. & Oyarbide, E., 2012. "Distributed generation network design considering ground capacitive couplings," Renewable Energy, Elsevier, vol. 45(C), pages 119-127.
    13. Mohanty, Sthitapragyan & Patra, Prashanta Kumar & Sahoo, Sudhansu Sekhar, 2016. "Prediction and application of solar radiation with soft computing over traditional and conventional approach – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 778-796.
    14. Zubi, Ghassan & Dufo-López, Rodolfo & Pasaoglu, Guzay & Pardo, Nicolás, 2016. "Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020–2040 scenario," Applied Energy, Elsevier, vol. 176(C), pages 309-319.
    15. Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
    16. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    17. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    18. Khan, Mohammad Junaid & Yadav, Amit Kumar & Mathew, Lini, 2017. "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 577-607.
    19. Jakhrani, Abdul Qayoom & Othman, Al-Khalid & Rigit, Andrew Ragai Henry & Samo, Saleem Raza & Kamboh, Shakeel Ahmed, 2012. "A novel analytical model for optimal sizing of standalone photovoltaic systems," Energy, Elsevier, vol. 46(1), pages 675-682.
    20. Chochowski, Andrzej & Obstawski, Paweł, 2017. "The use of thermal-electric analogy in solar collector thermal state analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 397-409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:97:y:2012:i:c:p:970-981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.