IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v396y2025ics0306261925010463.html

Underestimated Kuroshio power and its potential sites off Southeast Taiwan

Author

Listed:
  • Chang, Yu-Chia
  • Wu, Chau-Ron
  • Chu, Peter C.
  • Wang, You-Lin
  • Centurioni, Luca R.
  • Chen, Guan-Yu
  • Tseng, Ruo-Shan

Abstract

The shift towards a carbon-neutral sustainable society necessitates significant advances in clean and renewable energy worldwide. Ocean currents, characterized by substantial and stable kinetic energy, play a crucial role in accelerating the adoption of this goal. However, there is limited research addressing the optimization of site selection for ocean current power generation. This study makes three key contributions. First, it highlights the optimization of site selection for power generation, with the Kuroshio off the southeastern coast of Taiwan emerging as a highly promising area with substantial potential for harnessing ocean current energy. Second, NOAA drifters, shipboard ADCP transects, and a bottom-mounted mooring each register near-surface speeds 25–35 % higher than co-located HYCOM+NCODA model simulations, indicating that the model underestimates the Kuroshio power resource southeast of Taiwan by approximately 70 %. This finding underscores the importance of continued efforts to improve observational techniques and model resolution, as a comprehensive understanding is critical for effectively utilizing ocean currents as a sustainable energy source. Finally, the study quantifies a strong empirical relationship between flow velocity and turbine capacity factor, enabling initial estimates of energy output and levelized cost of energy (LCOE) for the preferred site.

Suggested Citation

  • Chang, Yu-Chia & Wu, Chau-Ron & Chu, Peter C. & Wang, You-Lin & Centurioni, Luca R. & Chen, Guan-Yu & Tseng, Ruo-Shan, 2025. "Underestimated Kuroshio power and its potential sites off Southeast Taiwan," Applied Energy, Elsevier, vol. 396(C).
  • Handle: RePEc:eee:appene:v:396:y:2025:i:c:s0306261925010463
    DOI: 10.1016/j.apenergy.2025.126316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925010463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hsu, Tai-Wen & Liau, Jian-Ming & Liang, Shin-Jye & Tzang, Shiaw-Yih & Doong, Dong-Jiing, 2015. "Assessment of Kuroshio current power test site of Green Island, Taiwan," Renewable Energy, Elsevier, vol. 81(C), pages 853-863.
    2. Chen, Falin, 2010. "Kuroshio power plant development plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2655-2668, December.
    3. Kabir, Asif & Lemongo-Tchamba, Ivan & Fernandez, Arturo, 2015. "An assessment of available ocean current hydrokinetic energy near the North Carolina shore," Renewable Energy, Elsevier, vol. 80(C), pages 301-307.
    4. Bernard Barnier & Anastasiia Domina & Sergey Gulev & Jean-Marc Molines & Thierry Maitre & Thierry Penduff & Julien Le Sommer & Pierre Brasseur & Laurent Brodeau & Pedro Colombo, 2020. "Modelling the impact of flow-driven turbine power plants on great wind-driven ocean currents and the assessment of their energy potential," Nature Energy, Nature, vol. 5(3), pages 240-249, March.
    5. Shirasawa, Katsutoshi & Tokunaga, Kohei & Iwashita, Hidetsugu & Shintake, Tsumoru, 2016. "Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents," Renewable Energy, Elsevier, vol. 91(C), pages 189-195.
    6. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    7. Guihua Wang & Lingwei Wu & Wei Mei & Shang-Ping Xie, 2022. "Ocean currents show global intensification of weak tropical cyclones," Nature, Nature, vol. 611(7936), pages 496-500, November.
    8. Chen, Falin & Lu, Shyi-Min & Tseng, Kuo-Tung & Lee, Si-Chen & Wang, Eric, 2010. "Assessment of renewable energy reserves in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2511-2528, December.
    9. Chang, Yu-Chia & Chu, Peter C. & Tseng, Ruo-Shan, 2015. "Site selection of ocean current power generation from drifter measurements," Renewable Energy, Elsevier, vol. 80(C), pages 737-745.
    10. Finkl, Charles W. & Charlier, Roger, 2009. "Electrical power generation from ocean currents in the Straits of Florida: Some environmental considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2597-2604, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yandong Du & Xiaoli Chen & Yao Dong & Xinyue Zhou & Yangwen Wu & Qiang Lu, 2025. "Risk Assessment of Offshore Wind–Solar–Current Energy Coupling Hydrogen Production Project Based on Hybrid Weighting Method and Aggregation Operator," Energies, MDPI, vol. 18(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    2. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Tsao, Che-Chih & Feng, An-Hsuan & Hsieh, Chieh & Fan, Kang-Hsien, 2017. "Marine current power with Cross-stream Active Mooring: Part I," Renewable Energy, Elsevier, vol. 109(C), pages 144-154.
    4. Sadoughipour, Mahsan & VanZwieten, James & Tang, Yufei, 2025. "Drifter-based global ocean current energy resource assessment," Renewable Energy, Elsevier, vol. 244(C).
    5. Shirasawa, Katsutoshi & Tokunaga, Kohei & Iwashita, Hidetsugu & Shintake, Tsumoru, 2016. "Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents," Renewable Energy, Elsevier, vol. 91(C), pages 189-195.
    6. Katsutoshi Shirasawa & Junichiro Minami & Tsumoru Shintake, 2017. "Scale-Model Experiments for the Surface Wave Influence on a Submerged Floating Ocean-Current Turbine," Energies, MDPI, vol. 10(5), pages 1-12, May.
    7. Tsao, Che-Chih & Yang, Chia-Che & Chen, Zhi-Xiang, 2023. "Scale model study of basic functions of the cross-stream active mooring for marine current power systems," Renewable Energy, Elsevier, vol. 211(C), pages 723-742.
    8. Campisi-Pinto, Salvatore & Gianchandani, Kaushal & Ashkenazy, Yosef, 2020. "Statistical tests for the distribution of surface wind and current speeds across the globe," Renewable Energy, Elsevier, vol. 149(C), pages 861-876.
    9. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    10. Juan F. Bárcenas Graniel & Jassiel V. H. Fontes & Hector F. Gomez Garcia & Rodolfo Silva, 2021. "Assessing Hydrokinetic Energy in the Mexican Caribbean: A Case Study in the Cozumel Channel," Energies, MDPI, vol. 14(15), pages 1-23, July.
    11. Islam, A.B.M. Saiful & Jameel, Mohammed & Jumaat, Mohd Zamin & Shirazi, S.M. & Salman, Firas A., 2012. "Review of offshore energy in Malaysia and floating Spar platform for sustainable exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6268-6284.
    12. Tsao, Che-Chih & Feng, An-Hsuan & Baharudin, Agus & Yang, Chia-Che, 2024. "Characteristics of ocean current meandering and potential efficacy of maximizing power capacity by tracking short-term meanders with hydro sail enabled active mooring," Renewable Energy, Elsevier, vol. 222(C).
    13. Chang, Yu-Chia & Chu, Peter C. & Tseng, Ruo-Shan, 2015. "Site selection of ocean current power generation from drifter measurements," Renewable Energy, Elsevier, vol. 80(C), pages 737-745.
    14. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    15. Kirinus, Eduardo de Paula & Oleinik, Phelype Haron & Costi, Juliana & Marques, Wiliam Correa, 2018. "Long-term simulations for ocean energy off the Brazilian coast," Energy, Elsevier, vol. 163(C), pages 364-382.
    16. Rahman, Abidur & Farrok, Omar & Haque, Md Mejbaul, 2022. "Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Tsao, Che-Chih & Chen, Zhi-Xiang & Feng, An-Hsuan & Baharudin, Agus, 2023. "Study of concentrated anchoring, siting, system layout and preliminary cost analysis for a large scale Kuroshio power plant by the cross-stream active mooring," Renewable Energy, Elsevier, vol. 205(C), pages 66-93.
    18. Bhui, Koushik & Hazra, Sugata & Bhadra, Tuhin, 2025. "Assessment of tidal energy potential from low-velocity tidal flows in the Indian Sundarbans utilizing validated hydrodynamic model and tidal turbine technology," Renewable Energy, Elsevier, vol. 242(C).
    19. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    20. Feng, Chun-Chiang & Chang, Kuei-Feng & Lin, Jin-Xu & Lee, Tsung-Chen & Lin, Shih-Mo, 2022. "Toward green transition in the post Paris Agreement era: The case of Taiwan," Energy Policy, Elsevier, vol. 165(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:396:y:2025:i:c:s0306261925010463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.