IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v396y2025ics0306261925009286.html

A novel SOC consistency evaluation method based on dynamic reconfigurable battery energy storage system

Author

Listed:
  • Zhang, Congjia
  • Zhou, Yanglin
  • Wang, Xiangjin
  • Liu, Min
  • Kang, Chongqing
  • Ci, Song

Abstract

The second-life use of retired electric vehicle (EV) batteries in energy storage systems (ESSs) plays a crucial role in resource recycling and environmental protection. However, the significant inconsistency among retired battery modules poses safety risks to the battery energy storage systems (BESSs). State of charge (SOC) consistency evaluation of traditional BESSs is challenging due to the complex working conditions and the relatively flat OCV-SOC (open circuit voltage-SOC) curve of LiFePO4 modules. Therefore, we propose a novel SOC consistency evaluation method based on dynamic reconfigurable battery system (DRBS). First, fast online OCV estimation can be achieved by the DRBS due to its ability to disconnect modules from the system. Then, coefficient of variation (CV) of OCV is designated as the SOC consistency indicator (CI). A CV calculation method is proposed to overcome voltage plateau and polarization effect, which facilitates the computation of consistency scores. Finally, the proposed method is verified by a real case study on a dynamic reconfigurable battery energy storage station utilizing retired EV modules. The results indicate that the proposed method can quantitatively evaluate the consistency levels across different DRBSs and effectively identify those with significant inconsistency.

Suggested Citation

  • Zhang, Congjia & Zhou, Yanglin & Wang, Xiangjin & Liu, Min & Kang, Chongqing & Ci, Song, 2025. "A novel SOC consistency evaluation method based on dynamic reconfigurable battery energy storage system," Applied Energy, Elsevier, vol. 396(C).
  • Handle: RePEc:eee:appene:v:396:y:2025:i:c:s0306261925009286
    DOI: 10.1016/j.apenergy.2025.126198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925009286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Penghua & Liu, Jianfei & Deng, Zhongwei & Yang, Yalian & Lin, Xianke & Couture, Jonathan & Hu, Xiaosong, 2022. "Increasing energy utilization of battery energy storage via active multivariable fusion-driven balancing," Energy, Elsevier, vol. 243(C).
    2. Tian, Jiaqiang & Wang, Yujie & Liu, Chang & Chen, Zonghai, 2020. "Consistency evaluation and cluster analysis for lithium-ion battery pack in electric vehicles," Energy, Elsevier, vol. 194(C).
    3. Fan, Xinyuan & Zhang, Weige & Sun, Bingxiang & Zhang, Junwei & He, Xitian, 2022. "Battery pack consistency modeling based on generative adversarial networks," Energy, Elsevier, vol. 239(PE).
    4. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    3. Xin, Zhicheng & Tang, Weiyu & Yao, Wen & Wu, Zan, 2025. "A review of thermal management of batteries with a focus on immersion cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 217(C).
    4. Peng, Simin & Chen, Shengdong & Liu, Yong & Yu, Quanqing & Kan, Jiarong & Li, Rui, 2025. "State of power prediction joint fisher optimal segmentation and PO-BP neural network for a parallel battery pack considering cell inconsistency," Applied Energy, Elsevier, vol. 381(C).
    5. Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
    6. Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
    7. Wang, Shichao & Wang, Yujie & Soo, Yin-Yi, 2025. "Evaluation and prediction of lithium-ion battery pack inconsistency in electric vehicles based on actual operating data," Energy, Elsevier, vol. 319(C).
    8. Ma, Chen & Chang, Long & Cui, Naxin & Duan, Bin & Zhang, Yulong & Yu, Zhihao, 2022. "Statistical relationships between numerous retired lithium-ion cells and packs with random sampling for echelon utilization," Energy, Elsevier, vol. 257(C).
    9. Liu, Xinghua & Xue, Xinying & Ma, Wentao & Hasanien, Hany M. & Wei, Zhongbao & Duan, Jiandong, 2025. "A novel two-level equalization topology with AMPC-IVY-FLC algorithm for enhanced lithium-ion battery pack balancing," Energy, Elsevier, vol. 335(C).
    10. Chen, Zhen & Liu, Weijie & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2025. "Inconsistency identification for Lithium-ion battery energy storage systems using deep embedded clustering," Applied Energy, Elsevier, vol. 388(C).
    11. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Ma, Kai & Xu, Shaochun & Bai, Miao, 2024. "Concurrent multi-fault diagnosis of lithium-ion battery packs using random convolution kernel transformation and Gaussian process classifier," Energy, Elsevier, vol. 306(C).
    12. Aydogdu, Mehmet Onur & Delbusso, Angelo & Edirisinghe, Mohan, 2025. "A battery powered approach to pressurised spinning: Introducing the sustainability concept and shaping the future of fibre production methodologies," Applied Energy, Elsevier, vol. 397(C).
    13. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    14. Wang, Shibo & Li, Peimiao & Wang, Hui & Feng, Yun & Li, Hongliang, 2024. "Multimodal transient topology optimization design of heat dissipation structure in electric aircraft power cabin," Applied Energy, Elsevier, vol. 371(C).
    15. Soo, Yin-Yi & Wang, Yujie & Xiang, Haoxiang & Chen, Zonghai, 2024. "Machine learning based battery pack health prediction using real-world data," Energy, Elsevier, vol. 308(C).
    16. Song, Ziyou & Yang, Niankai & Lin, Xinfan & Pinto Delgado, Fanny & Hofmann, Heath & Sun, Jing, 2022. "Progression of cell-to-cell variation within battery modules under different cooling structures," Applied Energy, Elsevier, vol. 312(C).
    17. Zhang, Jie & Xiao, Bo & Niu, Geng & Xie, Xuanzhi & Wu, Saixiang, 2024. "Joint estimation of state-of-charge and state-of-power for hybrid supercapacitors using fractional-order adaptive unscented Kalman filter," Energy, Elsevier, vol. 294(C).
    18. Kong, Fanhou & Liang, Xue & Yi, Lanlin & Fang, Xiaohui & Yin, Zhongbin & Wang, Yulong & Zhang, Ruixiang & Liu, Longyang & Chen, Qing & Li, Minghan & Li, Changjiu & Jiang, Hong & Chen, Yongjun, 2021. "Multi-electron reactions for the synthesis of a vanadium-based amorphous material as lithium-ion battery cathode with high specific capacity," Energy, Elsevier, vol. 219(C).
    19. Guo, Yuanjun & Yang, Zhile & Liu, Kailong & Zhang, Yanhui & Feng, Wei, 2021. "A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system," Energy, Elsevier, vol. 219(C).
    20. Gu, Heng & Chang, Yunwei & Chen, Yuanyuan & Guo, Jiang rong & Zou, Deqiu, 2024. "Experimental research on pipeless power battery cooling system using shape-stabilized phase change materials (SSPCM) coupled with seawater," Energy, Elsevier, vol. 286(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:396:y:2025:i:c:s0306261925009286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.