IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925007445.html
   My bibliography  Save this article

Experimental demonstration of dynamic demand response scheduling for PEM-electrolyzers

Author

Listed:
  • Keller, Roger
  • Baader, Florian Joseph
  • Bardow, André
  • Müller, Martin
  • Peters, Ralf

Abstract

The use of renewable energy sources, such as wind power and photovoltaics is expected to produce fluctuating electricity prices. These fluctuations give PEM electrolyzers the opportunity to reduce costs, as they can adapt their production rates rapidly. Moreover, typically slow temperature dynamics of electrolyzers increase their flexibility for effective operational management strategies. With a defined temperature trajectory during scheduling optimization, overload operation of the electrolyzer for a given amount of time is possible. However, the temperature dynamics are typically nonlinear. In conjunction with discrete on/off decisions, temperature dynamics lead to mixed-integer nonlinear optimization problems for scheduling that are highly challenging to solve in real time. In this study, we experimentally validate the dynamic ramping scheduling optimization method that precisely linearizes nonlinear temperature dynamics using a flatness-based coordinate transformation. Utilizing the available information from the dynamic scheduling optimization a 100 kW PEM electrolyzer was operated by studying three stack temperature control methods, rejecting disturbances from load variations. Identifying a suitable control method was essential to guarantee the desired temperature tracking performance of the optimization. Our experiments show a 3.8 % cost reduction compared to the benchmark without overload operation. The designed PEM electrolyzer model also deviated only 0.6 % in costs from the experiment. Simulative scaling of PEM electrolysis to 2 MW demonstrates even higher cost reductions with the dynamic ramping method, as the larger electrolyzer has slower dynamics.

Suggested Citation

  • Keller, Roger & Baader, Florian Joseph & Bardow, André & Müller, Martin & Peters, Ralf, 2025. "Experimental demonstration of dynamic demand response scheduling for PEM-electrolyzers," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007445
    DOI: 10.1016/j.apenergy.2025.126014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.