IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v391y2025ics0306261925006117.html

Decision-making and cost models of generation company agents for supporting future electricity market mechanism design based on agent-based simulation

Author

Listed:
  • Pan, Zhanhua
  • Jing, Zhaoxia

Abstract

The large-scale surge in renewable energy installations has transformed the capacity mix of power systems and the roles of generation companies (GENCOs). For example, some thermal generators are now operated at low output levels to ensure the generation capacity and ramping capability of the power system. As a result, the nonlinear characteristics of GENCOs’ marginal generation costs have gradually become prominent, rendering some previously linear assumption-based models obsolete. It is essential to reexamine the decision-making and cost models of GENCOs to support the equilibrium solution and mechanism design of the electricity market during this transition. This paper analyzes the impact of different cost model assumptions on GENCOs, thereby examining the relationship between GENCOs’ bidding models and cost models. We propose standardized expressions for GENCOs’ linear bidding models and piecewise step bidding models in multi-agent simulations of the electricity market. The applicability of different bidding models is analyzed. To address the issue of overly compressed decision space for GENCOs in previous studies, we propose a Multi-worker decision model based on (deep) reinforcement learning. This allows the decision space of GENCOs’ piecewise step bidding to fully cover the bidding space in actual market rules. Finally, various electricity market experiments based on multi-agent simulations are conducted. On the one hand, our proposed GENCOs decision model more effectively reproduces GENCOs’ behavior in actual electricity markets. On the other hand, using real mechanism design as an example, previous GENCOs models may lead to incorrect conclusions in simulations. The decision model proposed in this paper, employing piecewise step bidding and polynomial cost functions, makes the simulation results more consistent with actual rules, thereby effectively supporting future-proof market design.

Suggested Citation

  • Pan, Zhanhua & Jing, Zhaoxia, 2025. "Decision-making and cost models of generation company agents for supporting future electricity market mechanism design based on agent-based simulation," Applied Energy, Elsevier, vol. 391(C).
  • Handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006117
    DOI: 10.1016/j.apenergy.2025.125881
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Stavrakas, Vassilis & Papadelis, Sotiris & Flamos, Alexandros, 2019. "An agent-based model to simulate technology adoption quantifying behavioural uncertainty of consumers," Applied Energy, Elsevier, vol. 255(C).
    2. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    3. Yu, Liying & Wang, Peng & Chen, Zhe & Li, Dewen & Li, Ning & Cherkaoui, Rachid, 2023. "Finding Nash equilibrium based on reinforcement learning for bidding strategy and distributed algorithm for ISO in imperfect electricity market," Applied Energy, Elsevier, vol. 350(C).
    4. Wang, Jidong & Wu, Jiahui & Che, Yanbo, 2019. "Agent and system dynamics-based hybrid modeling and simulation for multilateral bidding in electricity market," Energy, Elsevier, vol. 180(C), pages 444-456.
    5. Lo Prete, Chiara & Palmer, Karen & Robertson, Molly, 2024. "Time for a Market Upgrade? A Review of Wholesale Electricity Market Designs for the Future," RFF Reports 24-09, Resources for the Future.
    6. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    7. Aliabadi, Danial Esmaeili & Kaya, Murat & Şahin, Güvenç, 2017. "An agent-based simulation of power generation company behavior in electricity markets under different market-clearing mechanisms," Energy Policy, Elsevier, vol. 100(C), pages 191-205.
    8. Wu, Jiahui & Wang, Jidong & Kong, Xiangyu, 2022. "Strategic bidding in a competitive electricity market: An intelligent method using Multi-Agent Transfer Learning based on reinforcement learning," Energy, Elsevier, vol. 256(C).
    9. Esmaeili Aliabadi, Danial & Chan, Katrina, 2022. "The emerging threat of artificial intelligence on competition in liberalized electricity markets: A deep Q-network approach," Applied Energy, Elsevier, vol. 325(C).
    10. Pierre Pinson, 2023. "What may future electricity markets look like?," Papers 2302.02833, arXiv.org, revised Feb 2023.
    11. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    12. Klemperer, Paul D & Meyer, Margaret A, 1989. "Supply Function Equilibria in Oligopoly under Uncertainty," Econometrica, Econometric Society, vol. 57(6), pages 1243-1277, November.
    13. Li, Gong & Shi, Jing & Qu, Xiuli, 2011. "Modeling methods for GenCo bidding strategy optimization in the liberalized electricity spot market–A state-of-the-art review," Energy, Elsevier, vol. 36(8), pages 4686-4700.
    14. Wang, Jiexin & Wang, Song, 2023. "The effect of electricity market reform on energy efficiency in China," Energy Policy, Elsevier, vol. 181(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    2. Esmaeili Aliabadi, Danial & Chan, Katrina, 2022. "The emerging threat of artificial intelligence on competition in liberalized electricity markets: A deep Q-network approach," Applied Energy, Elsevier, vol. 325(C).
    3. Li, Qirui & Yang, Zhifang & Yu, Juan & Li, Wenyuan, 2023. "Impacts of previous revenues on bidding strategies in electricity market: A quantitative analysis," Applied Energy, Elsevier, vol. 345(C).
    4. Hu, Fei & Zhao, Yong & Yu, Yaowen & Zhang, Changshun & Lian, Yicheng & Huang, Cheng & Li, Yuanzheng, 2025. "Strategic bidding with price-quantity pairs based on deep reinforcement learning considering competitors' behaviors," Applied Energy, Elsevier, vol. 391(C).
    5. Majid Al-Gwaiz & Xiuli Chao & Owen Q. Wu, 2017. "Understanding How Generation Flexibility and Renewable Energy Affect Power Market Competition," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 114-131, February.
    6. Priyanka Shinde & Ioannis Boukas & David Radu & Miguel Manuel de Villena & Mikael Amelin, 2021. "Analyzing Trade in Continuous Intra-Day Electricity Market: An Agent-Based Modeling Approach," Energies, MDPI, vol. 14(13), pages 1-31, June.
    7. Jiang, Yuzheng & Dong, Jun & Huang, Hexiang, 2024. "Optimal bidding strategy for the price-maker virtual power plant in the day-ahead market based on multi-agent twin delayed deep deterministic policy gradient algorithm," Energy, Elsevier, vol. 306(C).
    8. Motamedi Sedeh, Omid & Ostadi, Bakhtiar, 2020. "Optimization of bidding strategy in the day-ahead market by consideration of seasonality trend of the market spot price," Energy Policy, Elsevier, vol. 145(C).
    9. Ogbuabor, Jonathan E. & Ukwueze, Ezebuilo R. & Mba, Ifeoma C. & Ojonta, Obed I. & Orji, Anthony, 2023. "The asymmetric impact of economic policy uncertainty on global retail energy markets: Are the markets responding to the fear of the unknown?," Applied Energy, Elsevier, vol. 334(C).
    10. Xian Huang & Kun Liu, 2023. "Impact of Electricity Price Expectation in the Planning Period on the Evolution of Generation Expansion Planning in the Market Environment," Energies, MDPI, vol. 16(8), pages 1-21, April.
    11. repec:osf:socarx:x96ge_v1 is not listed on IDEAS
    12. Ostadi, Bakhtiar & Motamedi Sedeh, Omid & Husseinzadeh Kashan, Ali, 2020. "Risk-based optimal bidding patterns in the deregulated power market using extended Markowitz model," Energy, Elsevier, vol. 191(C).
    13. Poplavskaya, Ksenia & Lago, Jesus & de Vries, Laurens, 2020. "Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets," Applied Energy, Elsevier, vol. 270(C).
    14. Johannes Dahlke & Kristina Bogner & Matthias Mueller & Thomas Berger & Andreas Pyka & Bernd Ebersberger, 2020. "Is the Juice Worth the Squeeze? Machine Learning (ML) In and For Agent-Based Modelling (ABM)," Papers 2003.11985, arXiv.org.
    15. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    16. Dzikri Firmansyah Hakam, 2018. "Market Power Modelling in Electricity Market: A Critical Review," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 347-356.
    17. Debin Fang & Qiyu Ren & Qian Yu, 2018. "How Elastic Demand Affects Bidding Strategy in Electricity Market: An Auction Approach," Energies, MDPI, vol. 12(1), pages 1-13, December.
    18. Ghaninejad, Mousa, 2020. "عرضه، تقاضا، و پیشنهاد قیمت در بازار برق ایران [Supply, Demand, and Bidding in Iran’s Electricity Market]," MPRA Paper 105340, University Library of Munich, Germany.
    19. Lan, Liuhan & Zhang, Xingping & Ng, Tsan Sheng & Wang, Teng & Tan, Qinliang, 2025. "Bidding behaviors of coal-fired units in China's electricity market considering previous capacity revenues based on prospect theory," Energy, Elsevier, vol. 322(C).
    20. Wu, Shengyang & Ding, Zhaohao & Wang, Jingyu & Shi, Dongyuan, 2023. "Unveiling bidding uncertainties in electricity markets: A Bayesian deep learning framework based on accurate variational inference," Energy, Elsevier, vol. 276(C).
    21. Marcelle Caroline Thimotheo de Brito & Amaro O. Pereira Junior & Mario Veiga Ferraz Pereira & Julio César Cahuano Simba & Sergio Granville, 2022. "Competitive Behavior of Hydroelectric Power Plants under Uncertainty in Spot Market," Energies, MDPI, vol. 15(19), pages 1-22, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.