IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925005057.html
   My bibliography  Save this article

Fractional variable-order observer-based method for state-of-charge estimation of lithium-ion batteries

Author

Listed:
  • Wu, Xiaobo
  • Chen, Liping
  • Lopes, António M.
  • Ma, Hongli
  • Zhang, Chaolong
  • Li, Penghua
  • Guo, Wenliang
  • Yin, Lisheng

Abstract

In most fractional-order equivalent circuit models (ECM) of lithium-ion batteries (LIB), the order of the constant phase element is fixed, which usually translates into inaccuracies when describing the strongly nonlinear behavior of the voltage–current (U–I) characteristics of the batteries. In this paper, the problem is addressed by a novel fractional variable-order ECM (FVO-ECM) of LIB, where the order of the capacitor is a function of the state-of-charge (SOC). An improved chaotic adaptive fractional-order particle swarm optimization (CAFPSO) algorithm is designed to identify the FVO-ECM parameters, and its accuracy is verified with different models, parameter identification methods and under sub-zero cold environments. Then, a fractional variable-order observer (FVOO) is proposed for SOC estimation, and the dynamics of the error system are proven to be stable in the sense of Lyapunov. Finally, the proposed SOC estimation scheme is assessed using LIB experimental data, revealing its robustness under different test cycle conditions and temperatures. The experimental results show that the new method can work normally under various test cycles and different temperatures, exhibiting higher accuracy than existing alternative methods. The SOC estimation error is limited to a narrow band of ±0.02, and the root mean square error (RMSE) can be kept within 1 %. Moreover, the proposed approach can overcome the divergence caused by incorrect initial SOC values and random noise interference, revealing good robustness.

Suggested Citation

  • Wu, Xiaobo & Chen, Liping & Lopes, António M. & Ma, Hongli & Zhang, Chaolong & Li, Penghua & Guo, Wenliang & Yin, Lisheng, 2025. "Fractional variable-order observer-based method for state-of-charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925005057
    DOI: 10.1016/j.apenergy.2025.125775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925005057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Liping & Wu, Xiaobo & Lopes, António M. & Yin, Lisheng & Li, Penghua, 2022. "Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter," Energy, Elsevier, vol. 252(C).
    2. Guo, Shanshan & Ma, Liang, 2023. "A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation," Energy, Elsevier, vol. 263(PC).
    3. Guo, Ruohan & Shen, Weixiang, 2022. "Online state of charge and state of power co-estimation of lithium-ion batteries based on fractional-order calculus and model predictive control theory," Applied Energy, Elsevier, vol. 327(C).
    4. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    6. He, Xitian & Sun, Bingxiang & Zhang, Weige & Fan, Xinyuan & Su, Xiaojia & Ruan, Haijun, 2022. "Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery," Energy, Elsevier, vol. 244(PB).
    7. Bao, Xinyuan & Chen, Liping & Lopes, António M. & Li, Xin & Xie, Siqiang & Li, Penghua & Chen, YangQuan, 2023. "Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries," Energy, Elsevier, vol. 278(C).
    8. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
    9. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    2. Zeng, Yi & Li, Yan & Zhou, Zhongkai & Zhao, Daduan & Yang, Tong & Ren, Pu & Zhang, Chenghui, 2025. "Joint estimation of state of charge and health utilizing fractional-order square-root cubature Kalman filtering with order scheduling strategy," Energy, Elsevier, vol. 320(C).
    3. Xie, Yanxin & Wang, Shunli & Zhang, Gexiang & Fan, Yongcun & Fernandez, Carlos & Blaabjerg, Frede, 2023. "Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 336(C).
    4. Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
    5. Zhu, Guangyao & Hu, Minghui & Qiu, Chengyang & Deng, Kejun, 2025. "Integer variable-order equivalent circuit model and switching strategy for lithium-ion power batteries for vehicles based on information criterion under dynamic and static working conditions," Energy, Elsevier, vol. 322(C).
    6. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    7. Wan, Sicheng & Yang, Haojing & Lin, Jinwen & Li, Junhui & Wang, Yibo & Chen, Xinman, 2024. "Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM," Energy, Elsevier, vol. 310(C).
    8. Hong, Jichao & Zhang, Huaqin & Zhang, Xinyang & Yang, Haixu & Chen, Yingjie & Wang, Facheng & Huang, Zhongguo & Wang, Wei, 2024. "Online accurate voltage prediction with sparse data for the whole life cycle of Lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 369(C).
    9. Kuang, Pan & Zhou, Fei & Xu, Shuai & Li, Kangqun & Xu, Xiaobin, 2024. "State-of-charge estimation hybrid method for lithium-ion batteries using BiGRU and AM co-modified Seq2Seq network and H-infinity filter," Energy, Elsevier, vol. 300(C).
    10. Mu, Guixiang & Wei, Qingguo & Xu, Yonghong & Zhang, Hongguang & Zhang, Jian & Li, Qi, 2024. "Capacity estimation for lithium-ion batteries based on heterogeneous stacking model with feature fusion," Energy, Elsevier, vol. 313(C).
    11. Molla Shahadat Hossain Lipu & Tahia F. Karim & Shaheer Ansari & Md. Sazal Miah & Md. Siddikur Rahman & Sheikh T. Meraj & Rajvikram Madurai Elavarasan & Raghavendra Rajan Vijayaraghavan, 2022. "Intelligent SOX Estimation for Automotive Battery Management Systems: State-of-the-Art Deep Learning Approaches, Open Issues, and Future Research Opportunities," Energies, MDPI, vol. 16(1), pages 1-31, December.
    12. Bian, Chong & Duan, Zhiyu & Hao, Yaqian & Yang, Shunkun & Feng, Junlan, 2024. "Exploring large language model for generic and robust state-of-charge estimation of Li-ion batteries: A mixed prompt learning method," Energy, Elsevier, vol. 302(C).
    13. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    14. Liu, Zixi & Ruan, Guanqiang & Tian, Yupeng & Hu, Xing & Yan, Rong & Yang, Kuo, 2024. "A real-world battery state of charge prediction method based on a lightweight mixer architecture," Energy, Elsevier, vol. 311(C).
    15. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    16. Jiang, Bo & Tao, Siyi & Wang, Xueyuan & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "Mechanics-based state of charge estimation for lithium-ion pouch battery using deep learning technique," Energy, Elsevier, vol. 278(PA).
    17. Sheng, Wenjuan & Wang, Junkai & Peng, G.D., 2025. "Enhanced strain assistance for SOC estimation of lithium-ion batteries using FBG sensors," Applied Energy, Elsevier, vol. 383(C).
    18. Lu, Xin & Chen, Ning & Li, Hui & Guo, Shiyu & Chen, Zengtao, 2023. "Simulation of the temperature distribution of lithium-ion battery module considering the time-delay effect of the porous electrodes," Energy, Elsevier, vol. 284(C).
    19. Tang, Aihua & Huang, Yukun & Liu, Shangmei & Yu, Quanqing & Shen, Weixiang & Xiong, Rui, 2023. "A novel lithium-ion battery state of charge estimation method based on the fusion of neural network and equivalent circuit models," Applied Energy, Elsevier, vol. 348(C).
    20. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925005057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.