IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v387y2025ics0306261925003666.html
   My bibliography  Save this article

Hydrogen pipelines and embrittlement in gaseous environments: An up-to-date review

Author

Listed:
  • Fan, Xin
  • Cheng, Y. Frank

Abstract

Pipelines represent the most economical and efficient means for transporting hydrogen in large volumes across vast distances, contributing to accelerated realization of hydrogen economy. Nowadays, the development of hydrogen pipeline projects, including repurposing existing pipelines for hydrogen service, has become a global interest, especially in those major energy-producing and energy-consuming countries. However, steel pipelines are susceptible to hydrogen embrittlement (HE) in high-pressure hydrogen gas environments, potentially leading to pipeline failures. In this review, we establish a comprehensive knowledge base for comprehending, testing, and evaluating the gaseous HE in pipelines by a thorough examination of relevant research work. In addition to an overview of some major hydrogen pipeline projects in the world, the article consists of four integral parts essential to gaseous HE studies, namely, methods for exposure of steels to high-pressure hydrogen gas; measurements of the quantity of H atoms inside the steels; stress-strain behavior of pipeline steels under high-pressure hydrogen gas exposure; and fracture and fatigue testing of pre-cracked steels within gaseous environments. Further research into gaseous HE in pipelines focuses on developing standardized, quantitative, and consistent methods to assess and define the susceptibility of pipelines to gaseous HE.

Suggested Citation

  • Fan, Xin & Cheng, Y. Frank, 2025. "Hydrogen pipelines and embrittlement in gaseous environments: An up-to-date review," Applied Energy, Elsevier, vol. 387(C).
  • Handle: RePEc:eee:appene:v:387:y:2025:i:c:s0306261925003666
    DOI: 10.1016/j.apenergy.2025.125636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Devinder Mahajan & Kun Tan & T. Venkatesh & Pradheep Kileti & Clive R. Clayton, 2022. "Hydrogen Blending in Gas Pipeline Networks—A Review," Energies, MDPI, vol. 15(10), pages 1-32, May.
    2. Marco Pellegrini & Alessandro Guzzini & Cesare Saccani, 2020. "A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network," Energies, MDPI, vol. 13(21), pages 1-22, October.
    3. Ogden, Joan & Jaffe, Amy Myers & Scheitrum, Daniel & McDonald, Zane & Miller, Marshall, 2018. "Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature," Energy Policy, Elsevier, vol. 115(C), pages 317-329.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Ingo & Jessica Tuuf & Margareta Björklund-Sänkiaho, 2022. "Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements," Energies, MDPI, vol. 15(21), pages 1-13, October.
    2. Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.
    3. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    4. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    5. Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Sanjay Kumar Kar & Akhoury Sudhir Kumar Sinha & Sidhartha Harichandan & Rohit Bansal & Marriyappan Sivagnanam Balathanigaimani, 2023. "Hydrogen economy in India: A status review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    7. Juliet Namukasa & Sheila Namagembe & Faridah Nakayima, 2020. "Fuel Efficiency Vehicle Adoption and Carbon Emissions in a Country Context," International Journal of Global Sustainability, Macrothink Institute, vol. 4(1), pages 1-21, December.
    8. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    9. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    11. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Andrzej Graczyk & Paweł Brusiło & Alicja Małgorzata Graczyk, 2025. "Hydrogen as a Renewable Fuel of Non-Biological Origins in the European Union—The Emerging Market and Regulatory Framework," Energies, MDPI, vol. 18(3), pages 1-39, January.
    14. Hoffart, Franziska, 2022. "What is a feasible and 1.5°C-aligned hydrogen infrastructure for Germany? A multi-criteria economic study based on socio-technical energy scenarios," Ruhr Economic Papers 979, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    15. Matteo Genovese & Viviana Cigolotti & Elio Jannelli & Petronilla Fragiacomo, 2023. "Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications," Energies, MDPI, vol. 16(6), pages 1-31, March.
    16. Andrea Dumančić & Nela Vlahinić Lenz & Goran Majstrović, 2023. "Can Hydrogen Production Be Economically Viable on the Existing Gas-Fired Power Plant Location? New Empirical Evidence," Energies, MDPI, vol. 16(9), pages 1-20, April.
    17. Nejc Klopčič & Thomas Stöhr & Ilena Grimmer & Markus Sartory & Alexander Trattner, 2022. "Refurbishment of Natural Gas Pipelines towards 100% Hydrogen—A Thermodynamic-Based Analysis," Energies, MDPI, vol. 15(24), pages 1-23, December.
    18. Yaïci, Wahiba & Longo, Michela, 2025. "Performance analysis of domestic boilers fuelled with hydrogen-enriched natural gas blends and pure hydrogen," Energy, Elsevier, vol. 322(C).
    19. German Dominguez-Gonzalez & Jose Ignacio Muñoz-Hernandez & Derek Bunn & Carlos Jesus Garcia-Checa, 2022. "Integration of Hydrogen and Synthetic Natural Gas within Legacy Power Generation Facilities," Energies, MDPI, vol. 15(12), pages 1-27, June.
    20. Szymon Kuczyński & Mariusz Łaciak & Andrzej Olijnyk & Adam Szurlej & Tomasz Włodek, 2019. "Thermodynamic and Technical Issues of Hydrogen and Methane-Hydrogen Mixtures Pipeline Transmission," Energies, MDPI, vol. 12(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:387:y:2025:i:c:s0306261925003666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.