IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v385y2025ics0306261925002338.html
   My bibliography  Save this article

Real-time optimal dispatch for large-scale clean energy bases via hierarchical distributed model predictive control

Author

Listed:
  • Chen, Xingyuan
  • Hu, Yang
  • Zhao, Jingwei
  • Chen, Zuo
  • Li, Zihao
  • Yang, Han

Abstract

Due to the multiple randomness from source and load sides, real-time dispatching of a large-scale clean energy base (LSCEB) with vast geographical area, numerous physical devices and complex interactive characteristics faces enormous challenges. To address this issue, this paper proposes a novel dispatching strategy named hierarchical distributed model predictive control (HDMPC). Firstly, by extracting the energy flow network of a generic LSCEB, the HDMPC strategy is finely designed, including the upper centralized manager (CM) layer and the lower distributed manager (DM) layer. The former has a three-level nested optimization problem with the day-scale, hour-scale and minute-scale cumulative objectives, respectively, for all the units in the source-side. The latter is a distributed model predictive control (DMPC) problem with one MPC controller for the optimization dispatch on the source side and the other one MPC controller for the optimization dispatch for the heating network on the grid-side. The two MPC controllers are sequentially interconnected for collaborative optimization between the source and grid side. Secondly, to provide accurate equation constraints for the above optimization problems, a multi-domain hybrid semi-mechanism modelling (MD-HSM) scheme is presented. Corresponding to the real-time dispatching task with time period of five minutes, detailed evaluation and selection of each unit's model are executed covering the source, grid and load sides. Finally, compared with the existing optimal economic dispatching strategy, simulation results show that the real-time optimal dispatch via HDMPC can achieve better operational economy, safety and flexibility and lower carbon emission, demonstrating its excellent application value.

Suggested Citation

  • Chen, Xingyuan & Hu, Yang & Zhao, Jingwei & Chen, Zuo & Li, Zihao & Yang, Han, 2025. "Real-time optimal dispatch for large-scale clean energy bases via hierarchical distributed model predictive control," Applied Energy, Elsevier, vol. 385(C).
  • Handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925002338
    DOI: 10.1016/j.apenergy.2025.125503
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Xu & Sun, Yuanzhang & Yang, Jun & Dou, Zhenlan & Li, Gaojunjie & Xu, Chengying & Wen, Yuxin, 2022. "Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses," Energy, Elsevier, vol. 251(C).
    2. Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
    3. Sgaramella, Antonio & Pastore, Lorenzo Mario & Lo Basso, Gianluigi & de Santoli, Livio, 2023. "Optimal RES integration for matching the Italian hydrogen strategy requirements," Renewable Energy, Elsevier, vol. 219(P1).
    4. Qiu, Yibin & Li, Qi & Wang, Tianhong & Yin, Liangzhen & Chen, Weirong & Liu, Hong, 2022. "Optimal planning of Cross-regional hydrogen energy storage systems considering the uncertainty," Applied Energy, Elsevier, vol. 326(C).
    5. Chao Ma & Sen Dong & Jijian Lian & Xiulan Pang, 2019. "Multi-Objective Sizing of Hybrid Energy Storage System for Large-Scale Photovoltaic Power Generation System," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    6. Chen, Zhang & Liu, Jun & Liu, Xinglei, 2022. "GPU accelerated power flow calculation of integrated electricity and heat system with component-oriented modeling of district heating network," Applied Energy, Elsevier, vol. 305(C).
    7. Hirsch, Hauke & Nicolai, Andreas, 2022. "An efficient numerical solution method for detailed modelling of large 5th generation district heating and cooling networks," Energy, Elsevier, vol. 255(C).
    8. Tian, Hang & Zhao, Haoran & Liu, Chunyang & Chen, Jian & Wu, Qiuwei & Terzija, Vladimir, 2022. "A dual-driven linear modeling approach for multiple energy flow calculation in electricity–heat system," Applied Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    2. Liu, Xinglei & Liu, Jun & Ren, Kezheng & Liu, Xiaoming & Liu, Jiacheng, 2022. "An integrated fuzzy multi-energy transaction evaluation approach for energy internet markets considering judgement credibility and variable rough precision," Energy, Elsevier, vol. 261(PB).
    3. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    4. Qiuyi Hong & Fanlin Meng & Jian Liu, 2023. "Customised Multi-Energy Pricing: Model and Solutions," Energies, MDPI, vol. 16(4), pages 1-31, February.
    5. Bu, Yuntao & Yu, Hao & Ji, Haoran & Song, Guanyu & Xu, Jing & Li, Juan & Zhao, Jinli & Li, Peng, 2024. "Hybrid data-driven operation method for demand response of community integrated energy systems utilizing virtual and physical energy storage," Applied Energy, Elsevier, vol. 366(C).
    6. Gheouany, Saad & Ouadi, Hamid & El Bakali, Saida, 2024. "Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code," Energy, Elsevier, vol. 306(C).
    7. Adil, Muhammad & Mahmud, M.A. Parvez & Kouzani, Abbas Z. & Khoo, Sui Yang, 2024. "Three-stage energy trading framework for retailers, charging stations, and electric vehicles: A game-theoretic approach," Energy, Elsevier, vol. 301(C).
    8. Zhang, Zhenwei & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming, 2024. "Optimal dispatch for cross-regional integrated energy system with renewable energy uncertainties: A unified spatial-temporal cooperative framework," Energy, Elsevier, vol. 292(C).
    9. Zhiming Lu & Youting Li & Guying Zhuo & Chuanbo Xu, 2023. "Configuration Optimization of Hydrogen-Based Multi-Microgrid Systems under Electricity Market Trading and Different Hydrogen Production Strategies," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    10. Buonomano, A. & Forzano, C. & Mongibello, L. & Palombo, A. & Russo, G., 2024. "Optimising low-temperature district heating networks: A simulation-based approach with experimental verification," Energy, Elsevier, vol. 304(C).
    11. Duan, Fude & Bu, Xiongzhu, 2025. "A new cloud-stochastic framework for optimized deployment of hydrogen storage in distribution network integrated with renewable energy considering hydrogen-based demand response," Energy, Elsevier, vol. 316(C).
    12. Yi, Xinning & Lu, Tianguang & Li, Yixiao & Ai, Qian & Hao, Ran, 2025. "Collaborative planning of multi-energy systems integrating complete hydrogen energy chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    13. Shamal Chandra Karmaker & Andrew Chapman & Kanchan Kumar Sen & Shahadat Hosan & Bidyut Baran Saha, 2022. "Renewable Energy Pathways toward Accelerating Hydrogen Fuel Production: Evidence from Global Hydrogen Modeling," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    14. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    15. Xu, Xuesong & Xu, Kai & Zeng, Ziyang & Tang, Jiale & He, Yuanxing & Shi, Guangze & Zhang, Tao, 2024. "Collaborative optimization of multi-energy multi-microgrid system: A hierarchical trust-region multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 375(C).
    16. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    17. Wu, Jinhui & Yang, Fuwen, 2023. "A dual-driven predictive control for photovoltaic-diesel microgrid secondary frequency regulation," Applied Energy, Elsevier, vol. 334(C).
    18. Ren, Kezheng & Liu, Jun & Wu, Zeyang & Liu, Xinglei & Nie, Yongxin & Xu, Haitao, 2024. "A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters," Applied Energy, Elsevier, vol. 355(C).
    19. Yi Yan & Xuerui Wang & Ke Li & Xiaopeng Kang & Weizheng Kong & Hongcai Dai, 2022. "Tri-Level Integrated Optimization Design Method of a CCHP Microgrid with Composite Energy Storage," Sustainability, MDPI, vol. 14(9), pages 1-29, April.
    20. Jiankai Gao & Yang Li & Bin Wang & Haibo Wu, 2023. "Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm," Energies, MDPI, vol. 16(7), pages 1-21, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925002338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.