IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925001369.html
   My bibliography  Save this article

A novel and efficient global maximum power tracking method for photovoltaic systems under complicated partial shading with repeatable irradiance conditions

Author

Listed:
  • Wang, Shun-Chung

Abstract

Partial shading conditions (PSC) significantly hinder the conversion efficiency of photovoltaic (PV) generation systems (PVGS), posing challenges for global maximum power point (GMPP) tracking (GMPPT). This paper proposes a novel and efficient two-stage GMPPT method to address the challenges, introducing multiple techniques to improve tracking performance under complicated and repeatable irradiance environments. In the first stage, a Lambert W-function (LWF)-based modeling and estimation mechanism are developed to identify the candidate shaded region (SR) containing the GMPP and its corresponding voltage operating point (VOP) using fewer samplings. In the second phase, the variable step size incremental conductance (VSSINC) method, starting from the VOP found in the first stage, takes over subsequent tracking to refine convergence on the GMPP. A PV system formed by a 5-series 1-parallel (5S1P) module string is utilized as a study case. The devised method demonstrates significant advancements compared to the four presented benchmark methods. Simulations across 2002 shading patterns (SP) achieve maximum improvement rates of 98.4 % in average tracking power error (ATPE), 8.1 % in total tracking success rate (TTSR), and 66.9 % in average tracking time (ATT). Experimental results under three random SPs show improvements of 93.1 % in average tracking power loss (ATPL), 5.31 % in average tracking accuracy (ATA), and 86.6 % in ATT, all of which outperform the counterparts. These results highlight the significant improvement in TTSR, robustness to changes in SP, and efficiency derived from the proposed accurate LWF-based system modeling and estimation for the critical VOPs. This study also provides a new solution for maximizing the power extraction from PVGS and paving the way for the broader application and advancement in solar technology.

Suggested Citation

  • Wang, Shun-Chung, 2025. "A novel and efficient global maximum power tracking method for photovoltaic systems under complicated partial shading with repeatable irradiance conditions," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001369
    DOI: 10.1016/j.apenergy.2025.125406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pei Ye, Song & Hua Liu, Yi & Chung Wang, Shun & Yu Pai, Hung, 2022. "A novel global maximum power point tracking algorithm based on Nelder-Mead simplex technique for complex partial shading conditions," Applied Energy, Elsevier, vol. 321(C).
    2. Sahoo, Buddhadeva & Samantaray, Subhransu Ranjan & Rout, Pravat Kumar, 2024. "Enhanced supervisory control scheme for hybrid microgrid operation with virtual power plants," Applied Energy, Elsevier, vol. 372(C).
    3. Słowik, Adam & Cpałka, Krzysztof & Xue, Yu & Hapka, Aneta, 2024. "An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm," Applied Energy, Elsevier, vol. 364(C).
    4. Ma, Chao & Deng, Zexing & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Wu, Runze & Tian, Zhuojun, 2024. "Space optimization of utility-scale photovoltaic power plants considering the impact of inter-row shading," Applied Energy, Elsevier, vol. 370(C).
    5. Azaioud, Hakim & Farnam, Arash & Knockaert, Jos & Vandevelde, Lieven & Desmet, Jan, 2024. "Efficiency optimisation and converterless PV integration by applying a dynamic voltage on an LVDC backbone," Applied Energy, Elsevier, vol. 356(C).
    6. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    7. Rizzo, Santi Agatino & Scelba, Giacomo, 2015. "ANN based MPPT method for rapidly variable shading conditions," Applied Energy, Elsevier, vol. 145(C), pages 124-132.
    8. Wang, Zhenlong & Wang, Yifan & Zhang, Xinrui & Yang, Dong & Ma, Duanyu & Ramakrishna, Seeram & Yuan, Weizheng & Ye, Tao, 2024. "Flexible photovoltaic micro-power system enabled with a customized MPPT," Applied Energy, Elsevier, vol. 367(C).
    9. Liu, Yang & Sun, Kangwen & Xu, Ziyuan & Lv, Mingyun, 2022. "Energy efficiency assessment of photovoltaic array on the stratospheric airship under partial shading conditions," Applied Energy, Elsevier, vol. 325(C).
    10. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    11. Salam, Zainal & Ahmed, Jubaer & Merugu, Benny S., 2013. "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, Elsevier, vol. 107(C), pages 135-148.
    12. Kuei-Hsiang Chao & Muhammad Nursyam Rizal, 2021. "A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    13. Lappalainen, Kari & Valkealahti, Seppo, 2021. "Experimental study of the maximum power point characteristics of partially shaded photovoltaic strings," Applied Energy, Elsevier, vol. 301(C).
    14. Bustani Hadi Wijaya & Ramadhani Kurniawan Subroto & Kuo Lung Lian & Nanang Hariyanto, 2020. "A Maximum Power Point Tracking Method Based on a Modified Grasshopper Algorithm Combined with Incremental Conductance," Energies, MDPI, vol. 13(17), pages 1-19, August.
    15. Celikel, Resat & Yilmaz, Musa & Gundogdu, Ahmet, 2022. "A voltage scanning-based MPPT method for PV power systems under complex partial shading conditions," Renewable Energy, Elsevier, vol. 184(C), pages 361-373.
    16. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Xiqing & Harrison, Ambe & Naser, Abdulbari Talib & Mbasso, Wulfran Fendzi & Dagal, Idriss & Alombah, Njimboh Henry & Jangir, Pradeep & Sharaf, Mohamed & El-Meligy, Mohammed, 2025. "A new intelligent control and advanced global optimization methodology for peak solar energy system performance under challenging shading conditions," Applied Energy, Elsevier, vol. 390(C).
    2. Pei Ye, Song & Hua Liu, Yi & Chung Wang, Shun & Yu Pai, Hung, 2022. "A novel global maximum power point tracking algorithm based on Nelder-Mead simplex technique for complex partial shading conditions," Applied Energy, Elsevier, vol. 321(C).
    3. Refaat, Ahmed & Ali, Qays Adnan & Elsakka, Mohamed Mohamed & Elhenawy, Yasser & Majozi, Thokozani & Korovkin, Nikolay V. & Elfar, Medhat Hegazy, 2024. "Extraction of maximum power from PV system based on horse herd optimization MPPT technique under various weather conditions," Renewable Energy, Elsevier, vol. 220(C).
    4. Arsad, A.Z. & Zuhdi, A.W. Mahmood & Azhar, A.D. & Chau, C.F. & Ghazali, A., 2025. "Advancements in maximum power point tracking for solar charge controllers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    5. Hong, Ying-Yi & Beltran, Angelo A. & Paglinawan, Arnold C., 2018. "A robust design of maximum power point tracking using Taguchi method for stand-alone PV system," Applied Energy, Elsevier, vol. 211(C), pages 50-63.
    6. Amir, A. & Amir, A. & Selvaraj, J. & Rahim, N.A., 2016. "Study of the MPP tracking algorithms: Focusing the numerical method techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 350-371.
    7. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Maximum power point tracking (MPPT) of a scale-up pressure retarded osmosis (PRO) osmotic power plant," Applied Energy, Elsevier, vol. 158(C), pages 584-596.
    8. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    9. K.T., Swetha & Reddy, B. Venugopal, 2024. "An effective dual-objective optimization to enhance power generation in a two-stage grid-tied PV system under partial shading conditions," Energy, Elsevier, vol. 305(C).
    10. Nihat Pamuk, 2023. "Performance Analysis of Different Optimization Algorithms for MPPT Control Techniques under Complex Partial Shading Conditions in PV Systems," Energies, MDPI, vol. 16(8), pages 1-25, April.
    11. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    12. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    13. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    14. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    15. Yousaf, Muhammad Zain & Koondhar, Mohsin Ali & Zaki, Zaki A. & Ahmed, Emad M. & Alaas, Zuhair Muhammed & Mahariq, Ibrahim & Guerrero, Josep M., 2025. "Improved MPPT of solar PV Systems under different Environmental conditions utilizes a Novel Hybrid PSO," Renewable Energy, Elsevier, vol. 244(C).
    16. Catalina González-Castaño & Carlos Restrepo & Javier Revelo-Fuelagán & Leandro L. Lorente-Leyva & Diego H. Peluffo-Ordóñez, 2021. "A Fast-Tracking Hybrid MPPT Based on Surface-Based Polynomial Fitting and P&O Methods for Solar PV under Partial Shaded Conditions," Mathematics, MDPI, vol. 9(21), pages 1-23, October.
    17. Li, Qiyu & Zhao, Shengdun & Wang, Mengqi & Zou, Zhongyue & Wang, Bin & Chen, Qixu, 2017. "An improved perturbation and observation maximum power point tracking algorithm based on a PV module four-parameter model for higher efficiency," Applied Energy, Elsevier, vol. 195(C), pages 523-537.
    18. Gao, Fang & Hu, Rongzhao & Yin, Linfei, 2023. "Variable boundary reinforcement learning for maximum power point tracking of photovoltaic grid-connected systems," Energy, Elsevier, vol. 264(C).
    19. Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
    20. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925001369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.