IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261925000765.html
   My bibliography  Save this article

Broad range material-to-system screening of metal–organic frameworks for hydrogen storage using machine learning

Author

Listed:
  • Wang, Xinyi
  • Breunig, Hanna M.
  • Peng, Peng

Abstract

Hydrogen is pivotal in the transition to sustainable energy systems, playing major roles in power generation and industrial applications. Metal–organic frameworks (MOFs) have emerged as promising mediums for efficient hydrogen storage. However, identifying potential candidates for deployment is challenging due to the vast number of currently available synthesized MOFs. This study integrates molecular simulations, machine learning, and techno-economic analysis to evaluate the performance of MOFs across broad operation conditions for hydrogen storage applications. While previous screenings of MOF databases have predominantly emphasized high hydrogen capacities under cryogenic conditions, this study reveals that optimal temperatures and pressures for cost minimization depend on the raw price of the MOF. Specifically, when MOFs are priced at $15/kg, among the 9720 MOFs tested, 9692 MOFs achieve the lowest cost at temperatures between 170 K and 250 K and a pressure of 150 bar. Under these optimal conditions, 362 MOFs deliver a lower levelized cost of storage than 350 bar compressed gas hydrogen storage. Furthermore, this study reveals key material properties that result in low system cost, such as high surface areas (>3000 m2/g), large void fractions (>0.78), and large pore volumes (>1.1 cm3/g).

Suggested Citation

  • Wang, Xinyi & Breunig, Hanna M. & Peng, Peng, 2025. "Broad range material-to-system screening of metal–organic frameworks for hydrogen storage using machine learning," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000765
    DOI: 10.1016/j.apenergy.2025.125346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925000765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Peyman Z. Moghadam & Yongchul G. Chung & Randall Q. Snurr, 2024. "Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications," Nature Energy, Nature, vol. 9(2), pages 121-133, February.
    2. Alauddin Ahmed & Saona Seth & Justin Purewal & Antek G. Wong-Foy & Mike Veenstra & Adam J. Matzger & Donald J. Siegel, 2019. "Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Seyed Mohamad Moosavi & Aditya Nandy & Kevin Maik Jablonka & Daniele Ongari & Jon Paul Janet & Peter G. Boyd & Yongjin Lee & Berend Smit & Heather J. Kulik, 2020. "Understanding the diversity of the metal-organic framework ecosystem," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Maria Inês Severino & Effrosyni Gkaniatsou & Farid Nouar & Moisés L Pinto & Christian Serre, 2021. "MOFs industrialization: a complete assessment of production costs," Post-Print hal-03429537, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gelin Chen & Deqing Liang & Zhanxiao Kang & Jintu Fan & Shuanshi Fan & Xuebing Zhou, 2025. "Review of Hydrogen Storage in Solid-State Materials," Energies, MDPI, vol. 18(11), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qureshi, Fazil & Yusuf, Mohammad & Ahmed, Salman & Haq, Moinul & Alraih, Alhafez M. & Hidouri, Tarek & Kamyab, Hesam & Vo, Dai-Viet N. & Ibrahim, Hussameldin, 2024. "Advancements in sorption-based materials for hydrogen storage and utilization: A comprehensive review," Energy, Elsevier, vol. 309(C).
    2. Na Yeon An & Jung Hyun Yang & Eunyong Song & Sung-Ho Hwang & Hyung-Gi Byun & Sanguk Park, 2024. "Digital Twin-Based Hydrogen Refueling Station (HRS) Safety Model: CNN-Based Decision-Making and 3D Simulation," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
    3. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    4. Ahsan Ali & Muhammad Adnan Khan & Hoimyung Choi, 2022. "Hydrogen Storage Prediction in Dibenzyltoluene as Liquid Organic Hydrogen Carrier Empowered with Weighted Federated Machine Learning," Mathematics, MDPI, vol. 10(20), pages 1-14, October.
    5. Jingqi Wang & Jiapeng Liu & Hongshuai Wang & Musen Zhou & Guolin Ke & Linfeng Zhang & Jianzhong Wu & Zhifeng Gao & Diannan Lu, 2024. "A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Bian, Ke & Liu, Yongjun & Zhou, Lei & Li, Bangqiang & Zhang, Hairong & Wang, Can & Peng, Fen & Li, Hailong & Yao, Shimiao & Wang, Chuanhong & Wang, Mengkun & Xiong, Lian & Guo, Haijun & Chen, Xinde, 2025. "Recent advances in CO2 solid adsorbents and application prospect in biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    7. Junkil Park & Youhan Lee & Jihan Kim, 2025. "Multi-modal conditional diffusion model using signed distance functions for metal-organic frameworks generation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    8. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    9. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    10. Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. dos Reis, Rui A. & Rangel, Gustavo P. & Neto, Belmira, 2024. "Social life cycle assessment of green hydrogen production: Evaluating a projected Portuguese industrial production plant," Renewable Energy, Elsevier, vol. 235(C).
    12. Gür, Turgut M., 2024. "Giga-ton and tera-watt scale challenges at the energy - climate crossroads: A global perspective," Energy, Elsevier, vol. 290(C).
    13. Liufei Shen & Cheng Zhang & Feiyue Shan & Long Chen & Shuai Liu & Zhiqiang Zheng & Litong Zhu & Jinduo Wang & Xingzheng Wu & Yujia Zhai, 2024. "Review and Prospects of Key Technologies for Integrated Systems in Hydrogen Production from Offshore Superconducting Wind Power," Energies, MDPI, vol. 18(1), pages 1-17, December.
    14. Barbara Uliasz-Misiak & Jacek Misiak & Radosław Tarkowski, 2025. "Research Trends in Underground Hydrogen Storage: A Bibliometric Approach," Energies, MDPI, vol. 18(7), pages 1-23, April.
    15. Cao, Ruifeng & Li, Weiqiang & Chen, Ziqi & Li, Yawei, 2024. "Development and assessment of a novel isobaric compressed hydrogen energy storage system integrated with pumped hydro storage and high-pressure proton exchange membrane water electrolyzer," Energy, Elsevier, vol. 294(C).
    16. Cao, Qiang & Chen, Yuji & Wang, Zhiping & Wang, Miaomiao & Wang, Pengcheng & Ge, Lichun & Li, Peng & Zhao, Qinyu & Wang, Bo & Gan, Zhihua, 2025. "Improving the cooling efficiency of cryo-compressed hydrogen based on the temperature-distributed method in regenerative refrigerators," Energy, Elsevier, vol. 314(C).
    17. Sleiti, Ahmad K. & Al-Ammari, Wahib A. & Musharavati, Farayi, 2024. "Novel integrated system for power, hydrogen, and ammonia production using direct oxy-combustion sCO2 power cycle with automatic CO2 capture, water electrolyzer, and Haber-Bosch process," Energy, Elsevier, vol. 307(C).
    18. Stucchi, Leonardo & Bocchiola, Daniele & Simoni, Camilla & Ambrosini, Stefano Romano & Bianchi, Alberto & Rosso, Renzo, 2023. "Future hydropower production under the framework of NextGenerationEU: The case of Santa Giustina reservoir in Italian Alps," Renewable Energy, Elsevier, vol. 215(C).
    19. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Zhang, Jibao & Li, Yan & Rao, Yizhi & Li, Yang & He, Tianbiao & Linga, Praveen & Wang, Xiaolin & Chen, Qian & Yin, Zhenyuan, 2024. "Probing the pathway of H2-THF and H2-DIOX sII hydrates formation: Implication on hydrate-based H2 storage," Applied Energy, Elsevier, vol. 376(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261925000765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.