IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261924025996.html
   My bibliography  Save this article

Evaluation of the cooling effectiveness of air-cooled data centers by energy diagram

Author

Listed:
  • Li, Nan
  • Li, Haowei
  • Duan, Kaiwen
  • Tao, Wen-Quan

Abstract

Data centers are one of the world's largest energy consumers, and their cooling systems contribute to the majority of the total energy consumption. Although some studies have suggested evaluation metrics, the cooling capacity utilization in the computer room of air-cooled data centers is still not able to be directly quantified. In this paper, the dimensionless index Effective Cooling Ratio (ECR) is proposed for the first time to evaluate the energy efficiency of the cooling process in air-cooled data centers. By decoupling the cooling process of the computer room, the energy diagram is developed to analyze the thermal energy changes of each phase. Moreover, the proving of this approach is carried out with computational fluid dynamics simulation; three data center models are investigated, and the results demonstrate the good performance of the enclosed aisle. This metric not only provides a valuable tool for quantifying the cooling and energy performance within data centers but also suggests ways to improve the energy efficiency of data centers.

Suggested Citation

  • Li, Nan & Li, Haowei & Duan, Kaiwen & Tao, Wen-Quan, 2025. "Evaluation of the cooling effectiveness of air-cooled data centers by energy diagram," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025996
    DOI: 10.1016/j.apenergy.2024.125215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jian & Jurasz, Jakub & Li, Hailong & Tao, Wen-Quan & Duan, Yuanyuan & Yan, Jinyue, 2020. "A new indicator for a fair comparison on the energy performance of data centers," Applied Energy, Elsevier, vol. 276(C).
    2. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiankun Chang & Yuanfeng Huang & Kaiyan Liu & Xin Xu & Yaohua Zhao & Song Pan, 2024. "Optimization Control Strategies and Evaluation Metrics of Cooling Systems in Data Centers: A Review," Sustainability, MDPI, vol. 16(16), pages 1-41, August.
    2. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    3. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    4. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    5. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    6. Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
    7. Zhang, Yingbo & Shan, Kui & Li, Xiuming & Li, Hangxin & Wang, Shengwei, 2023. "Research and Technologies for next-generation high-temperature data centers – State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    8. Du, Yahui & Zhou, Zhihua & Yang, Xiaochen & Yang, Xueqing & Wang, Cheng & Liu, Junwei & Yuan, Jianjuan, 2023. "Dynamic thermal environment management technologies for data center: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    10. Hu, Zhi-Hua & Zheng, Yu-Xin & Wang, You-Gan, 2022. "Packing computing servers into the vessel of an underwater data center considering cooling efficiency," Applied Energy, Elsevier, vol. 314(C).
    11. Khaled Iyad Alsharif & Aspen Glaspell & Kyosung Choo, 2021. "Energy Conservation Measures for a Research Data Center in an Academic Campus," Energies, MDPI, vol. 14(10), pages 1-12, May.
    12. Mateusz Borkowski & Adam Krzysztof Piłat, 2022. "Energy Efficiency Increase Achieved by Dedicated Rule-Based Control of Chillers Operating in the Data Center," Energies, MDPI, vol. 15(7), pages 1-25, March.
    13. Fujen Wang & Yishun Huang & BowoYuli Prasetyo, 2019. "Energy-Efficient Improvement Approaches through Numerical Simulation and Field Measurement for a Data Center," Energies, MDPI, vol. 12(14), pages 1-18, July.
    14. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    15. Leehter Yao & Jin-Hao Huang, 2019. "Multi-Objective Optimization of Energy Saving Control for Air Conditioning System in Data Center," Energies, MDPI, vol. 12(8), pages 1-16, April.
    16. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    17. Han, Zongwei & Wei, Haotian & Sun, Xiaoqing & Bai, Chenguang & Xue, Da & Li, Xiuming, 2020. "Study on influence of operating parameters of data center air conditioning system based on the concept of on-demand cooling," Renewable Energy, Elsevier, vol. 160(C), pages 99-111.
    18. Jin, Chaoqiang & Bai, Xuelian & Yang, Chao & Mao, Wangxin & Xu, Xin, 2020. "A review of power consumption models of servers in data centers," Applied Energy, Elsevier, vol. 265(C).
    19. Wang, Ningbo & Guo, Yanhua & Huang, Congqi & Tian, Bo & Shao, Shuangquan, 2025. "Multi-scale collaborative modeling and deep learning-based thermal prediction for air-cooled data centers: An innovative insight for thermal management," Applied Energy, Elsevier, vol. 377(PB).
    20. Ji, Haoran & Chen, Sirui & Yu, Hao & Li, Peng & Yan, Jinyue & Song, Jieying & Wang, Chengshan, 2022. "Robust operation for minimizing power consumption of data centers with flexible substation integration," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.