IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v366y2024ics0306261924007396.html
   My bibliography  Save this article

Sulfolane-based biphasic solvent with high water-balance robustness and degradation resistance for industrial CO2 capture

Author

Listed:
  • Yuan, Bingling
  • Chen, Zhen
  • Zhang, Qianxuan
  • Zhan, Guoxiong
  • Xing, Lei
  • Huang, Zhoulan
  • Li, Yuchen
  • Wang, Lidong
  • Li, Junhua

Abstract

Chemisorption with biphasic solvents is a promising low-energy strategy for separating CO2 from industrial flue gas, however, amine degradation and changes in water content can considerably impede the phase-splitting performance. To the issues, tetramethylene sulfone (TMS) was selected as separating agent to prepare a biphasic solvent with polyamine triethylenetetramine (TETA) with a TETA:TMS:H2O ratio of 2:6:2 (denoted as 20 T-60TMS). The CO2 loading of the blended phase and the volume fraction of the rich phase were 2.56 mol/L and 35.4%, respectively; the total regeneration heat duty was 2.36 GJ/tCO2. The proposed biphasic solvent exhibited better resistance to oxidative degradation and thermal degradation than did previously reported solvents, attributed to the beneficial effect of TMS. Additionally, the degradation products did not substantially reduce the phase separation performance after a 360 h thermal degradation test. A dynamic phase-splitting evaluation revealed that the 20 T-60TMS solvent was robust to changes in water content. Theoretical calculations confirmed that the introduction of TMS weakened the hydrogen bond between TETACOO−/TETAH+ and H2O, engendering enhanced TETACOO− and TETAH+ self-aggregation, forming a strong hydrogen bond network, and achieving fast phase separation. This work provides a novel biphasic solvent with excellent tolerance and stability for CO2 capture from flue gas.

Suggested Citation

  • Yuan, Bingling & Chen, Zhen & Zhang, Qianxuan & Zhan, Guoxiong & Xing, Lei & Huang, Zhoulan & Li, Yuchen & Wang, Lidong & Li, Junhua, 2024. "Sulfolane-based biphasic solvent with high water-balance robustness and degradation resistance for industrial CO2 capture," Applied Energy, Elsevier, vol. 366(C).
  • Handle: RePEc:eee:appene:v:366:y:2024:i:c:s0306261924007396
    DOI: 10.1016/j.apenergy.2024.123356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:366:y:2024:i:c:s0306261924007396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.