IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924005956.html
   My bibliography  Save this article

Energy management for scalable battery swapping stations: A deep reinforcement learning and mathematical optimization cascade approach

Author

Listed:
  • Su, Yongxin
  • Yue, Shuaixian
  • Qiu, Lei
  • Chen, Jie
  • Wang, Rui
  • Tan, Mao

Abstract

The rapid growth of electric vehicles is driving the expansion of scalable Battery Swapping Stations (BSSs) to meet the demand for fast charging. However, existing BSS energy management struggles to adapt to the changes in battery counts online, the uncertainty of electricity prices and battery demand, as well as the complexity of demand response (DR). To address these issues, we propose a cascading approach that combines Deep Reinforcement Learning (DRL) with Mathematical Optimization (MO). Firstly, our method employs a two-layer optimization framework and establishes a BSS model. The upper controller uses DRL to make sequential decisions on total power for each time slot, addressing sequential decision-making under uncertainty. The lower controller uses MO to allocate total power to each charging bay for a single time slot, addressing space complexity. Secondly, we tailor proximal policy optimization algorithms and mixed-integer quadratic programming algorithms for BSS DR. The DRL is universally adaptable to scalable BSS, while the MO automatically generates and solves optimization models based on the working charging bay count. The proposed method is at least 33 times faster than existing methods and performs well in scalable BSSs under uncertain conditions. It can converge within a typical BSS DR scheduling slot of 15 min based on an i7-8950H CPU, even for a BSS with 3200 charging bays.

Suggested Citation

  • Su, Yongxin & Yue, Shuaixian & Qiu, Lei & Chen, Jie & Wang, Rui & Tan, Mao, 2024. "Energy management for scalable battery swapping stations: A deep reinforcement learning and mathematical optimization cascade approach," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924005956
    DOI: 10.1016/j.apenergy.2024.123212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924005956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.