IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923013855.html
   My bibliography  Save this article

Influence of clamping pressure on contact pressure uniformity and electrical output performance of proton exchange membrane fuel cell

Author

Listed:
  • Jiang, Wei
  • Zhang, Kai
  • Huang, Xing
  • Cai, Zhen
  • Zheng, Jinjin
  • Kai, Yue
  • Zheng, Bailin
  • Song, Ke

Abstract

The contact pressure distributions are initially analyzed by conducting structural simulations on a single cell and a 40-cell stack of proton exchange membrane fuel cell (PEMFC) at various clamping pressures. The corresponding experimental pressure-sensitive film distributions are obtained that shows a good agreement with the simulation results. Then, the experimental and simulation data are compared by transforming images of pressure-sensitive film from experiments into detailed contact pressure data. The contact pressure uniformity of the simulation and experiment are compared by introducing mean pressure error and fluctuating intensity, and the optimal pressure range for best contact pressure uniformity is determined to be between 1.25 MPa and 1.67 MPa. Finally, CFD simulation approach is utilized to assess the electrical output performance. When comparing interface contact resistance (ICR) to porosity, the results indicate a reduction in power density of 5.1% and 1.2% at low clamping pressure compared to the case without taking ICR and porosity into account, while it decreases by 7.5% and 6.3% under high clamping pressure, respectively. It also deduced that there exists an optimal clamping pressure range for the best electrical output performance. The optimal clamping pressure is approximately 1.33 MPa, which is consistent with the previous structural results. In summary, experiments and numerical calculations of structure and fluid are carried out in this study to comprehensively evaluate the influence of clamping pressure on the structural and electrical performance of the PEMFC, the methods of experiments and simulations can offer guidance on the stack assembly process in practical applications.

Suggested Citation

  • Jiang, Wei & Zhang, Kai & Huang, Xing & Cai, Zhen & Zheng, Jinjin & Kai, Yue & Zheng, Bailin & Song, Ke, 2024. "Influence of clamping pressure on contact pressure uniformity and electrical output performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013855
    DOI: 10.1016/j.apenergy.2023.122021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Yan & Wu, Shiyu & Qin, Yanzhou & Otoo, Obed Nenyi & Zhang, Junfeng, 2020. "Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 271(C).
    2. Qiu, Diankai & Janßen, Holger & Peng, Linfa & Irmscher, Philipp & Lai, Xinmin & Lehnert, Werner, 2018. "Electrical resistance and microstructure of typical gas diffusion layers for proton exchange membrane fuel cell under compression," Applied Energy, Elsevier, vol. 231(C), pages 127-137.
    3. Barzegari, M.M. & Ghadimi, M. & Momenifar, M., 2020. "Investigation of contact pressure distribution on gas diffusion layer of fuel cell with pneumatic endplate," Applied Energy, Elsevier, vol. 263(C).
    4. Zhou, Zihan & Qiu, Diankai & Zhai, Shuang & Peng, Linfa & Lai, Xinmin, 2020. "Investigation of the assembly for high-power proton exchange membrane fuel cell stacks through an efficient equivalent model," Applied Energy, Elsevier, vol. 277(C).
    5. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    6. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    7. Lin, Chen & Yan, Xiaohui & Wei, Guanghua & Ke, Changchun & Shen, Shuiyun & Zhang, Junliang, 2019. "Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Yan, Xiaohui & Lin, Chen & Zheng, Zhifeng & Chen, Junren & Wei, Guanghua & Zhang, Junliang, 2020. "Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression," Applied Energy, Elsevier, vol. 258(C).
    9. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    10. Wu, Horng-Wen & Shih, Gin-Jang & Chen, Yi-Bin, 2018. "Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement," Applied Energy, Elsevier, vol. 220(C), pages 47-58.
    11. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    12. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    13. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xiaohui & Lin, Chen & Zheng, Zhifeng & Chen, Junren & Wei, Guanghua & Zhang, Junliang, 2020. "Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression," Applied Energy, Elsevier, vol. 258(C).
    2. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    3. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Keller, Nico & von Unwerth, Thomas, 2022. "Advanced parametric model for analysis of the influence of channel cross section dimensions and clamping pressure on current density distribution in PEMFC," Applied Energy, Elsevier, vol. 307(C).
    5. Li, Qifeng & Sun, Kai & Suo, Mengshan & Zeng, Zhen & Guan, Chengshuo & Liu, Huaiyu & Che, Zhizhao & Wang, Tianyou, 2024. "Water transport in PEMFC with metal foam flow fields: Visualization based on AI image recognition," Applied Energy, Elsevier, vol. 365(C).
    6. Niu, Zhiqiang & Bao, Zhiming & Wu, Jingtian & Wang, Yun & Jiao, Kui, 2018. "Two-phase flow in the mixed-wettability gas diffusion layer of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 232(C), pages 443-450.
    7. Jiao, Daokuan & Jiao, Kui & Zhong, Shenghui & Du, Qing, 2022. "Investigations on heat and mass transfer in gas diffusion layers of PEMFC with a gas–liquid-solid coupled model," Applied Energy, Elsevier, vol. 316(C).
    8. Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
    9. Zhiming Zhang & Hui Ren & Song Hu & Xinfeng Zhang & Tong Zhang & Jiaming Zhou & Shangfeng Jiang & Tao Yu & Bo Deng, 2022. "Arrangement of Belleville Springs on Endplates Combined with Optimal Cross-Sectional Shape in PEMFC Stack Using Equivalent Beam Modeling and FEA," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    10. Chen, Hao & Guo, Hang & Ye, Fang & MA, Chong Fang, 2022. "Cell performance and flow losses of proton exchange membrane fuel cells with orientated-type flow channels," Renewable Energy, Elsevier, vol. 181(C), pages 1338-1352.
    11. Zhou, Zihan & Qiu, Diankai & Zhai, Shuang & Peng, Linfa & Lai, Xinmin, 2020. "Investigation of the assembly for high-power proton exchange membrane fuel cell stacks through an efficient equivalent model," Applied Energy, Elsevier, vol. 277(C).
    12. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    13. Luka Mihanović & Željko Penga & Lei Xing & Viktor Hacker, 2021. "Combining Baffles and Secondary Porous Layers for Performance Enhancement of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(12), pages 1-28, June.
    14. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    15. Yanqin Chen & Yuchao Ke & Yingsong Xia & Chongdu Cho, 2021. "Investigation on Mechanical Properties of a Carbon Paper Gas Diffusion Layer through a 3-D Nonlinear and Orthotropic Constitutive Model," Energies, MDPI, vol. 14(19), pages 1-14, October.
    16. Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2024. "Conduction mechanism analysis and modeling of different gas diffusion layers for PEMFC to improve their bulk conductivities via microstructure design," Applied Energy, Elsevier, vol. 362(C).
    17. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    18. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    19. Cai, Genchun & Liang, Yunmin & Liu, Zhichun & Liu, Wei, 2020. "Design and optimization of bio-inspired wave-like channel for a PEM fuel cell applying genetic algorithm," Energy, Elsevier, vol. 192(C).
    20. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.