IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics0306261923011170.html
   My bibliography  Save this article

Explainable district heat load forecasting with active deep learning

Author

Listed:
  • Huang, Yaohui
  • Zhao, Yuan
  • Wang, Zhijin
  • Liu, Xiufeng
  • Liu, Hanjing
  • Fu, Yonggang

Abstract

District heat load forecasting is a challenging task that involves predicting future heat demand based on historical data and various influencing factors. Accurate forecasting is essential for optimizing energy production and distribution in district heating systems. However, most existing forecasting models lack transparency and interpretability and fail to capture the spatial–temporal dependencies in the data. Moreover, they often require a large amount of annotated data for training, which can be costly and time-consuming to obtain. In this paper, we present a novel approach to district heat load forecasting, which involves predicting future heat demand based on historical data and various influencing factors. The proposed approach is based on an Active Graph Recurrent Network (Ac-GRN), which leverages the strengths of active deep learning and graph neural networks to capture the complex spatial–temporal dependencies in the data. The approach also provides explainability for its predictions by using correlation-based attribution methods. The active deep learning component can effectively select the most informative and representative samples from a large pool of data, reducing the frequency and cost of data collection and human effort. The graph neural network component can model both linear and nonlinear relationships among heat meters using bidirectional recurrent connections, enhancing the accuracy and robustness of the predictions. We conduct extensive experiments and compare our approach with eleven state-of-the-art models on a real-world dataset of district heating consumption data from Danish residential buildings. Our results show that our approach outperforms other models in terms of accuracy, robustness, reliability, and computational efficiency for multi-horizon multi-step district heat load forecasting. Our approach also provides meaningful explanations for its predictions by highlighting the most influential factors and heat meters for each prediction. This paper makes a novel contribution to district heat load forecasting with explainability.

Suggested Citation

  • Huang, Yaohui & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng & Liu, Hanjing & Fu, Yonggang, 2023. "Explainable district heat load forecasting with active deep learning," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011170
    DOI: 10.1016/j.apenergy.2023.121753
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923011170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gadd, Henrik & Werner, Sven, 2013. "Daily heat load variations in Swedish district heating systems," Applied Energy, Elsevier, vol. 106(C), pages 47-55.
    2. Zengping Wang & Bing Zhao & Haibo Guo & Lingling Tang & Yuexing Peng, 2019. "Deep Ensemble Learning Model for Short-Term Load Forecasting within Active Learning Framework," Energies, MDPI, vol. 12(20), pages 1-13, October.
    3. Wang, Zhijin & Liu, Xiufeng & Huang, Yaohui & Zhang, Peisong & Fu, Yonggang, 2023. "A multivariate time series graph neural network for district heat load forecasting," Energy, Elsevier, vol. 278(PA).
    4. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    5. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
    6. Chung, Won Hee & Gu, Yeong Hyeon & Yoo, Seong Joon, 2022. "District heater load forecasting based on machine learning and parallel CNN-LSTM attention," Energy, Elsevier, vol. 246(C).
    7. Wenjing Han & Eduardo Coutinho & Huabin Ruan & Haifeng Li & Björn Schuller & Xiaojie Yu & Xuan Zhu, 2016. "Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-23, September.
    8. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    9. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    10. Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
    11. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    12. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    2. Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
    3. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    4. Felten, Björn, 2020. "An integrated model of coupled heat and power sectors for large-scale energy system analyses," Applied Energy, Elsevier, vol. 266(C).
    5. Chen, Minghao & Xie, Zhiyuan & Sun, Yi & Zheng, Shunlin, 2023. "The predictive management in campus heating system based on deep reinforcement learning and probabilistic heat demands forecasting," Applied Energy, Elsevier, vol. 350(C).
    6. Guelpa, Elisa, 2021. "Impact of thermal masses on the peak load in district heating systems," Energy, Elsevier, vol. 214(C).
    7. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    8. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    9. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
    10. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    11. Davine N. G. Janssen & Eunice Pereira Ramos & Vincent Linderhof & Nico Polman & Chrysi Laspidou & Dennis Fokkinga & Duarte de Mesquita e Sousa, 2020. "The Climate, Land, Energy, Water and Food Nexus Challenge in a Land Scarce Country: Innovations in the Netherlands," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    12. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    13. Fritz, M. & Plötz, P. & Schebek, L., 2022. "A technical and economical comparison of excess heat transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    15. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    16. Zhang, Fan & Bales, Chris & Fleyeh, Hasan, 2021. "Night setback identification of district heat substations using bidirectional long short term memory with attention mechanism," Energy, Elsevier, vol. 224(C).
    17. Haiyan Meng & Yakai Lu & Zhe Tian & Xiangbei Jiang & Zhongqing Han & Jide Niu, 2023. "Performance Evaluation Method of Day-Ahead Load Prediction Models in a District Heating and Cooling System: A Case Study," Energies, MDPI, vol. 16(14), pages 1-19, July.
    18. Chung, Won Hee & Gu, Yeong Hyeon & Yoo, Seong Joon, 2022. "District heater load forecasting based on machine learning and parallel CNN-LSTM attention," Energy, Elsevier, vol. 246(C).
    19. Huang, Guizao & Wu, Guangning & Yang, Zefeng & Chen, Xing & Wei, Wenfu, 2023. "Development of surrogate models for evaluating energy transfer quality of high-speed railway pantograph-catenary system using physics-based model and machine learning," Applied Energy, Elsevier, vol. 333(C).
    20. Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.