IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923009923.html
   My bibliography  Save this article

Long-term operation of isolated microgrids with renewables and hybrid seasonal-battery storage

Author

Listed:
  • Guo, Zhongjie
  • Wei, Wei
  • Bai, Jiayu
  • Mei, Shengwei

Abstract

With the progress of decarbonization, renewable-powered microgrids are attracting wide attention. To cope with the fluctuation of renewable power at different timescales, both long-term and short-term energy storage devices are required. This paper studies the operation of renewable-dominated isolated microgrids integrated with hybrid seasonal-battery storage. A data-driven scheduling-correction framework is proposed. By leveraging the historical data of renewable power and load, the scheduling module generates ex-post optimal state-of-charge (SoC) sequences of the seasonal energy storage ahead of the operating year. In each period of real-time operation, the correction module performs two steps: the first step is to update the reference SoC for the seasonal storage based on the ex-post optimal SoC sequences and the newly observed data; the second step is to solve a bi-objective rolling-horizon optimization problem which minimizes the instant operating cost while steering the SoC of seasonal storage to its reference value. An appealing feature of the proposed method is that the long-term renewable power forecasts are not required. A microgrid system is devised to verify the proposed framework. Numerical tests show that the scheduling-correction framework outperforms existing rolling horizon approaches in compromising economy, power supply reliability, and renewable energy utilization.

Suggested Citation

  • Guo, Zhongjie & Wei, Wei & Bai, Jiayu & Mei, Shengwei, 2023. "Long-term operation of isolated microgrids with renewables and hybrid seasonal-battery storage," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009923
    DOI: 10.1016/j.apenergy.2023.121628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petrollese, Mario & Valverde, Luis & Cocco, Daniele & Cau, Giorgio & Guerra, José, 2016. "Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid," Applied Energy, Elsevier, vol. 166(C), pages 96-106.
    2. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    3. Jiarui Wang & Dexin Li & Xiangyu Lv & Xiangdong Meng & Jiajun Zhang & Tengfei Ma & Wei Pei & Hao Xiao, 2022. "Two-Stage Energy Management Strategies of Sustainable Wind-PV-Hydrogen-Storage Microgrid Based on Receding Horizon Optimization," Energies, MDPI, vol. 15(8), pages 1-18, April.
    4. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    5. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    6. Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).
    7. Eriksson, E.L.V. & Gray, E.MacA., 2017. "Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review," Applied Energy, Elsevier, vol. 202(C), pages 348-364.
    8. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    9. Barbry, Adrien & Anjos, Miguel F. & Delage, Erick & Schell, Kristen R., 2019. "Robust self-scheduling of a price-maker energy storage facility in the New York electricity market," Energy Economics, Elsevier, vol. 78(C), pages 629-646.
    10. Hemmati, Reza & Mehrjerdi, Hasan & Bornapour, Mosayeb, 2020. "Hybrid hydrogen-battery storage to smooth solar energy volatility and energy arbitrage considering uncertain electrical-thermal loads," Renewable Energy, Elsevier, vol. 154(C), pages 1180-1187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le, Tay Son & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Ngo, Tuan Duc, 2023. "Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage," Applied Energy, Elsevier, vol. 336(C).
    2. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    3. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    5. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    6. Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).
    7. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    9. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).
    10. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    11. Wang, Jing & Kang, Lixia & Huang, Xiankun & Liu, Yongzhong, 2021. "An analysis framework for quantitative evaluation of parametric uncertainty in a cooperated energy storage system with multiple energy carriers," Energy, Elsevier, vol. 226(C).
    12. Md. Sanwar Hossain & Abdullah G. Alharbi & Khondoker Ziaul Islam & Md. Rabiul Islam, 2021. "Techno-Economic Analysis of the Hybrid Solar PV/H/Fuel Cell Based Supply Scheme for Green Mobile Communication," Sustainability, MDPI, vol. 13(22), pages 1-29, November.
    13. Fiorentini, Massimo & Heer, Philipp & Baldini, Luca, 2023. "Design optimization of a district heating and cooling system with a borehole seasonal thermal energy storage," Energy, Elsevier, vol. 262(PB).
    14. Marzi, Emanuela & Morini, Mirko & Saletti, Costanza & Vouros, Stavros & Zaccaria, Valentina & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2023. "Power-to-Gas for energy system flexibility under uncertainty in demand, production and price," Energy, Elsevier, vol. 284(C).
    15. Schmid, Fabian & Behrendt, Frank, 2023. "Genetic sizing optimization of residential multi-carrier energy systems: The aim of energy autarky and its cost," Energy, Elsevier, vol. 262(PA).
    16. Chen Yang & Li Sun & Hao Chen, 2023. "Thermodynamics Analysis of a Novel Compressed Air Energy Storage System Combined with Solid Oxide Fuel Cell–Micro Gas Turbine and Using Low-Grade Waste Heat as Heat Source," Energies, MDPI, vol. 16(19), pages 1-28, October.
    17. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics," Energy, Elsevier, vol. 206(C).
    18. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    19. Liu, Fang & Mo, Qiu & Yang, Yongwen & Li, Pai & Wang, Shuai & Xu, Yanping, 2022. "A nonlinear model-based dynamic optimal scheduling of a grid-connected integrated energy system," Energy, Elsevier, vol. 243(C).
    20. Christina Papadimitriou & Marialaura Di Somma & Chrysanthos Charalambous & Martina Caliano & Valeria Palladino & Andrés Felipe Cortés Borray & Amaia González-Garrido & Nerea Ruiz & Giorgio Graditi, 2023. "A Comprehensive Review of the Design and Operation Optimization of Energy Hubs and Their Interaction with the Markets and External Networks," Energies, MDPI, vol. 16(10), pages 1-46, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.