IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v398y2025ics0306261925011353.html

Optimized hybrid hydrogen-battery storage planning for Island microgrids: A TSA-THC approach for addressing multi-time-scale imbalances

Author

Listed:
  • Zhang, Qingzhu
  • Mu, Yunfei
  • Jia, Hongjie
  • Yu, Xiaodan
  • Hou, Kai

Abstract

The high volatility of renewable energy presents significant challenges for electricity balancing in off-grid island microgrids (OGIM) across multiple time scales. Hybrid hydrogen-battery storage (HHBS) offers an effective solution to mitigate electricity imbalances over various time horizons. However, planning HHBS typically requires year-round operational considerations, leading to substantial computational complexity due to the large number of variables. To address this challenge, a novel planning method that integrates time series aggregation (TSA) and time horizon compression (THC) is proposed to optimize computational efficiency without compromising planning accuracy. This method preserves the long operational cycle characteristics of hydrogen storage (HS) while minimizing battery-related variables, thus ensuring a balance between computational feasibility and accuracy. The THC method reduces the battery operation time scale to increase computational efficiency, whereas the TSA guides the operation sequence, ensuring precise battery planning. An HHBS planning model is developed to co-optimize HHBS capacity across different time scales, minimizing combined costs, including investment, operation, maintenance, curtailment, load shedding, and fuel costs. Source-load uncertainty on islands is modelled using intervals, and the uncertain planning model is converted into a deterministic model via the interval optimization (IO) method. Case studies on the OGIM in the South China Sea validate the effectiveness of the proposed method, reducing the computational time by 50.33 % and limiting the HHBS capacity error to no more than 0.87 % compared with the year-round time scale method.

Suggested Citation

  • Zhang, Qingzhu & Mu, Yunfei & Jia, Hongjie & Yu, Xiaodan & Hou, Kai, 2025. "Optimized hybrid hydrogen-battery storage planning for Island microgrids: A TSA-THC approach for addressing multi-time-scale imbalances," Applied Energy, Elsevier, vol. 398(C).
  • Handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011353
    DOI: 10.1016/j.apenergy.2025.126405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925011353
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Obara, Shin’ya & Fujimoto, Shoki & Sato, Katsuaki & Utsugi, Yuta, 2021. "Planning renewable energy introduction for a microgrid without battery storage," Energy, Elsevier, vol. 215(PB).
    2. Jiang, Qian & Mu, Yunfei & Jia, Hongjie & Cao, Yan & Wang, Zibo & Wei, Wei & Hou, Kai & Yu, Xiaodan, 2022. "A Stackelberg Game-based planning approach for integrated community energy system considering multiple participants," Energy, Elsevier, vol. 258(C).
    3. Jack, M.W. & Mirfin, A. & Anderson, B., 2021. "The role of highly energy-efficient dwellings in enabling 100% renewable electricity," Energy Policy, Elsevier, vol. 158(C).
    4. Jiang, C. & Han, X. & Liu, G.R. & Liu, G.P., 2008. "A nonlinear interval number programming method for uncertain optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 1-13, July.
    5. Shao, Zhentong & Cao, Xiaoyu & Zhai, Qiaozhu & Guan, Xiaohong, 2023. "Risk-constrained planning of rural-area hydrogen-based microgrid considering multiscale and multi-energy storage systems," Applied Energy, Elsevier, vol. 334(C).
    6. Li, Zichen & Xia, Yanghong & Bo, Yaolong & Wei, Wei, 2024. "Optimal planning for electricity-hydrogen integrated energy system considering multiple timescale operations and representative time-period selection," Applied Energy, Elsevier, vol. 362(C).
    7. Wu, Chuantao & Zhou, Dezhi & Lin, Xiangning & Sui, Quan & Wei, Fanrong & Li, Zhengtian, 2022. "A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems," Energy, Elsevier, vol. 252(C).
    8. Meng, He & Jia, Hongjie & Xu, Tao & Hatziargyriou, Nikos & Wei, Wei & Wang, Rujing, 2025. "Internal pricing driven dynamic aggregation of virtual power plant with energy storage systems," Energy, Elsevier, vol. 321(C).
    9. Sheng, Kangling & Wang, Xiaojun & Si, Fangyuan & Zhou, Yue & Liu, Zhao & Hua, Haochen & Wang, Xihao & Duan, Yuge, 2024. "Rational capacity investment for renewable hydrogen-based steelmaking systems: A multi-stage expansion planning strategy," Applied Energy, Elsevier, vol. 372(C).
    10. Lei, Zijian & Yu, Hao & Li, Peng & Ji, Haoran & Yan, Jinyue & Song, Guanyu & Wang, Chengshan, 2024. "A compact time horizon compression method for planning community integrated energy systems with long-term energy storage," Applied Energy, Elsevier, vol. 361(C).
    11. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2019. "Importance subsampling: improving power system planning under climate-based uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Zhou, Dezhi & Wu, Chuantao & Sui, Quan & Lin, Xiangning & Li, Zhengtian, 2022. "A novel all-electric-ship-integrated energy cooperation coalition for multi-island microgrids," Applied Energy, Elsevier, vol. 320(C).
    13. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    14. Carvallo, Claudio & Jalil-Vega, Francisca & Moreno, Rodrigo, 2023. "A multi-energy multi-microgrid system planning model for decarbonisation and decontamination of isolated systems," Applied Energy, Elsevier, vol. 343(C).
    15. J W Chinneck & K Ramadan, 2000. "Linear programming with interval coefficients," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(2), pages 209-220, February.
    16. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Gabrielli, Paolo & Fürer, Florian & Mavromatidis, Georgios & Mazzotti, Marco, 2019. "Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis," Applied Energy, Elsevier, vol. 238(C), pages 1192-1210.
    18. Guo, Zhongjie & Wei, Wei & Bai, Jiayu & Mei, Shengwei, 2023. "Long-term operation of isolated microgrids with renewables and hybrid seasonal-battery storage," Applied Energy, Elsevier, vol. 349(C).
    19. Ye, Anqi & Guan, Bowen & Liu, Xiaohua & Zhang, Tao, 2023. "Using solar energy to achieve near-zero energy buildings in Tibetan Plateau," Renewable Energy, Elsevier, vol. 218(C).
    20. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    2. Li, Zichen & Xia, Yanghong & Bo, Yaolong & Wei, Wei, 2024. "Optimal planning for electricity-hydrogen integrated energy system considering multiple timescale operations and representative time-period selection," Applied Energy, Elsevier, vol. 362(C).
    3. Alexander Holtwerth & André Xhonneux & Dirk Müller, 2024. "Model Predictive Control of a Stand-Alone Hybrid Battery-Hydrogen Energy System: A Case Study of the PHOEBUS Energy System," Energies, MDPI, vol. 17(18), pages 1-46, September.
    4. Lu, Tianguang & Yi, Xinning & Li, Jing & Wu, Shaocong, 2025. "Collaborative planning of integrated hydrogen energy chain multi-energy systems: A review," Applied Energy, Elsevier, vol. 393(C).
    5. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    6. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    7. Tan, Jiawei & Chen, Xingyu & Bu, Yang & Wang, Feng & Wang, Jialing & Huang, Xianan & Hu, Zhenda & Liu, Lin & Lin, Changzhui & Meng, Chao & Lin, Jian & Xie, Shan & Xu, Jinmei & Jing, Rui & Zhao, Yingru, 2024. "Incorporating FFTA based safety assessment of lithium-ion battery energy storage systems in multi-objective optimization for integrated energy systems," Applied Energy, Elsevier, vol. 367(C).
    8. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2021. "Stochastic optimal planning scheme of a zero-carbon multi-energy system (ZC-MES) considering the uncertainties of individual energy demand and renewable resources: An integrated chance-constrained and," Energy, Elsevier, vol. 232(C).
    9. Pecenak, Zachary K. & Stadler, Michael & Mathiesen, Patrick & Fahy, Kelsey & Kleissl, Jan, 2020. "Robust design of microgrids using a hybrid minimum investment optimization," Applied Energy, Elsevier, vol. 276(C).
    10. Pickering, Bryn & Choudhary, Ruchi, 2021. "Quantifying resilience in energy systems with out-of-sample testing," Applied Energy, Elsevier, vol. 285(C).
    11. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2023. "Reducing climate risk in energy system planning: A posteriori time series aggregation for models with storage," Applied Energy, Elsevier, vol. 334(C).
    12. Zhang, Boyun & Wakui, Tetsuya, 2025. "A near-optimal solution method for year-round operational planning of energy supply-storage systems utilizing time-domain decomposition," Energy, Elsevier, vol. 335(C).
    13. Lei, Zijian & Yu, Hao & Li, Peng & Ji, Haoran & Yan, Jinyue & Song, Guanyu & Wang, Chengshan, 2024. "A compact time horizon compression method for planning community integrated energy systems with long-term energy storage," Applied Energy, Elsevier, vol. 361(C).
    14. Jimiao Zhang & Jie Li, 2024. "Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future," Energies, MDPI, vol. 17(16), pages 1-26, August.
    15. Le, Son Tay & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Teodosio, Birch & Ngo, Tuan Duc, 2024. "Comparative life cycle assessment of renewable energy storage systems for net-zero buildings with varying self-sufficient ratios," Energy, Elsevier, vol. 290(C).
    16. Terlouw, Tom & Savvakis, Nikolaos & Bauer, Christian & McKenna, Russell & Arampatzis, George, 2025. "Designing multi-energy systems in Mediterranean regions towards energy autonomy," Applied Energy, Elsevier, vol. 377(PB).
    17. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    18. Fan, Guangyao & Yu, Binbin & Sun, Bo & Li, Fan, 2024. "Multi-time-space scale optimization for a hydrogen-based regional multi-energy system," Applied Energy, Elsevier, vol. 371(C).
    19. Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
    20. Petkov, Ivalin & Gabrielli, Paolo & Spokaite, Marija, 2021. "The impact of urban district composition on storage technology reliance: trade-offs between thermal storage, batteries, and power-to-hydrogen," Energy, Elsevier, vol. 224(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.