IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923008838.html
   My bibliography  Save this article

Reward adaptive wind power tracking control based on deep deterministic policy gradient

Author

Listed:
  • Chen, Peng
  • Han, Dezhi

Abstract

Wind power efficiency is an essential factor affecting wind power development, and efficient wind power control methods are the key to improving wind power efficiency. Previous wind power control methods require high internal system expertise in internal systems and struggled to balance the accuracy of the maximum power control and the output stability under high wind speed. Therefore, this paper proposes a reward-adaptive control method for wind power tracking based on Deep Deterministic Policy Gradient (DDPG). The method can use one controller to simultaneously control the generator torque and pitch angle in various operating conditions following the system state and the designed flag of operating conditions, thus enabling efficient tracking of the maximum power generation, and stabilizing the output power under high wind speed. Moreover, this paper proposes an internal and external reward algorithm that integrates the Intrinsic Curiosity Module (ICM) and the Actor–Critic (AC) architecture, which can adaptively calculate the reward of DDPG, thereby effectively resolving the sparse reward problem, accelerating the convergence of neural network, and improving the learning effect. From the simulation, the control method proposed in this paper can effectively improve the power generation efficiency under turbulent wind speed, reduce the pitch angle variation by about 30%, and improve the power tracking accuracy by more than 70%.

Suggested Citation

  • Chen, Peng & Han, Dezhi, 2023. "Reward adaptive wind power tracking control based on deep deterministic policy gradient," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008838
    DOI: 10.1016/j.apenergy.2023.121519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923008838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    2. Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
    3. Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
    4. Sahin, Mustafa & Yavrucuk, Ilkay, 2022. "Adaptive envelope protection control of wind turbines under varying operational conditions," Energy, Elsevier, vol. 247(C).
    5. Youssef, Abdel-Raheem & Mousa, Hossam H.H. & Mohamed, Essam E.M., 2020. "Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area," Renewable Energy, Elsevier, vol. 154(C), pages 875-893.
    6. Yao, Qi & Hu, Yang & Zhao, Tianyang & Guan, Yuanpeng & Luo, Zhiling & Liu, Jizhen, 2022. "Fatigue load suppression during active power control process in wind farm using dynamic-local-reference DMPC," Renewable Energy, Elsevier, vol. 183(C), pages 423-434.
    7. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongsen Li & Kang Qian & Ciwei Gao & Yiyue Xu & Qiang Xing & Zhangfan Wang, 2024. "Research on Electric Hydrogen Hybrid Storage Operation Strategy for Wind Power Fluctuation Suppression," Energies, MDPI, vol. 17(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
    2. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    3. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    4. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    5. Yi-kun Qian & Yi-xin Liu & Ben-jiang Mao & Song Zhang & Yanan Liu & Peng Feng, 2022. "Research on the relationship between the scattering contribution and physical factors of the reference radiation regulated by ISO 4037–1," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-10, December.
    6. Liu, Junbo & Cai, Chang & Song, Dongran & Zhong, Xiaohui & Shi, Kezhong & Chen, Yinpeng & Cheng, Shijie & Huang, Yupian & Jiang, Xue & Li, Qing'an, 2024. "Nonlinear model predictive control for maximum wind energy extraction of semi-submersible floating offshore wind turbine based on simplified dynamics model," Energy, Elsevier, vol. 311(C).
    7. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    8. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    9. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    11. Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
    12. Crippa, Paola & Alifa, Mariana & Bolster, Diogo & Genton, Marc G. & Castruccio, Stefano, 2021. "A temporal model for vertical extrapolation of wind speed and wind energy assessment," Applied Energy, Elsevier, vol. 301(C).
    13. Du, Jingcai & Zhang, Caiping & Li, Shuowei & Zhang, Linjing & Zhang, Weige, 2024. "Aging abnormality detection of lithium-ion batteries combining feature engineering and deep learning," Energy, Elsevier, vol. 297(C).
    14. Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
    15. Giani, Paolo & Tagle, Felipe & Genton, Marc G. & Castruccio, Stefano & Crippa, Paola, 2020. "Closing the gap between wind energy targets and implementation for emerging countries," Applied Energy, Elsevier, vol. 269(C).
    16. Li, Xuehan & Wang, Wei & Fang, Fang & Liu, Jizhen & Chen, Zhe, 2025. "Improving active power regulation for wind turbine by phase leading cascaded error-based active disturbance rejection control and multi-objective optimization," Renewable Energy, Elsevier, vol. 243(C).
    17. Chen, Liping & Xie, Siqiang & Lopes, António M. & Li, Huafeng & Bao, Xinyuan & Zhang, Chaolong & Li, Penghua, 2024. "A new SOH estimation method for Lithium-ion batteries based on model-data-fusion," Energy, Elsevier, vol. 286(C).
    18. Syed Majed Ashraf & M. Saad Bin Arif & Mohammed Khouj & Shahrin Md. Ayob & Muhammad I. Masud, 2025. "Python-Based Implementation of Metaheuristic MPPT Techniques: A Cost-Effective Framework for Solar Photovoltaic Systems in Developing Nations," Energies, MDPI, vol. 18(12), pages 1-18, June.
    19. Wang, Wenwen & Kong, Xiaobing & Li, Gangqiang & Liu, Xiangjie & Ma, Lele & Liu, Wenting & Lee, Kwang Y., 2024. "Wind farm control using distributed economic MPC scheme under the influence of wake effect," Energy, Elsevier, vol. 309(C).
    20. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost," Energies, MDPI, vol. 15(15), pages 1-17, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.