IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v339y2023ics0306261923003197.html
   My bibliography  Save this article

Optimal sizing and siting of energy storage systems considering curtailable photovoltaic generation in power distribution networks

Author

Listed:
  • Gupta, Rahul
  • Sossan, Fabrizio

Abstract

This work proposes a method for optimal planning (sizing and siting) energy storage systems (ESSs) in power distribution grids while considering the option of curtailing photo-voltaic (PV) generation. More specifically, for a given PV generation capacity to install, this method evaluates whether curtailing PV generation might be more economical than installing ESS. Indeed, while curtailing excess PV generation might be considered a last resort to avoid grid violations during operations, it is typically neglected in the planning phase. The proposed method accounts for the constraints of the power grid (i.e., nodal voltages, lines, and substation transformer limits) modeled by linearized power flow equations to keep the problem formulation tractable. The planning problem minimizes the net investment costs of the ESSs, and the imported and exported electricity costs considering a planning horizon of 20 years. The results are presented for a medium voltage (MV) distribution grid with different levels of installed capacity of PV generation, reflecting future scenarios of PV generation development. The sensitivity of the ESSs’ sizes and investment costs to the electricity prices accounting for variable levels of PV production in the global generation mix is also investigated.

Suggested Citation

  • Gupta, Rahul & Sossan, Fabrizio, 2023. "Optimal sizing and siting of energy storage systems considering curtailable photovoltaic generation in power distribution networks," Applied Energy, Elsevier, vol. 339(C).
  • Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003197
    DOI: 10.1016/j.apenergy.2023.120955
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923003197
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hemmati, Reza & Saboori, Hedayat & Jirdehi, Mehdi Ahmadi, 2017. "Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources," Energy, Elsevier, vol. 133(C), pages 380-387.
    2. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    3. Gupta, Rahul & Sossan, Fabrizio & Paolone, Mario, 2021. "Countrywide PV hosting capacity and energy storage requirements for distribution networks: The case of Switzerland," Applied Energy, Elsevier, vol. 281(C).
    4. Hartner, Michael & Permoser, Andreas, 2018. "Through the valley: The impact of PV penetration levels on price volatility and resulting revenues for storage plants," Renewable Energy, Elsevier, vol. 115(C), pages 1184-1195.
    5. von Appen, J. & Braun, M., 2018. "Strategic decision making of distribution network operators and investors in residential photovoltaic battery storage systems," Applied Energy, Elsevier, vol. 230(C), pages 540-550.
    6. Novoa, Laura & Flores, Robert & Brouwer, Jack, 2019. "Optimal renewable generation and battery storage sizing and siting considering local transformer limits," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shariatio, O. & Coker, P.J. & Smith, S.T. & Potter, B. & Holderbaum, W., 2024. "An integrated techno-economic approach for design and energy management of heavy goods electric vehicle charging station with energy storage systems," Applied Energy, Elsevier, vol. 369(C).
    2. Cassano, Stefano & Sossan, Fabrizio, 2025. "Scheduling power-intensive operations of Battery Energy Storage Systems and application to hybrid hydropower plants," Applied Energy, Elsevier, vol. 386(C).
    3. Li, Zhanhe & Li, Xiaoqian & Lu, Chao & Ma, Kechun & Bao, Weihan, 2024. "Carbon emission responsibility accounting in renewable energy-integrated DC traction power systems," Applied Energy, Elsevier, vol. 355(C).
    4. Ge, Pingxu & Tang, Daogui & Yuan, Yuji & Guerrero, Josep M. & Zio, Enrico, 2025. "A hierarchical multi-objective co-optimization framework for sizing and energy management of coupled hydrogen-electricity energy storage systems at ports," Applied Energy, Elsevier, vol. 384(C).
    5. Shabbir, Noman & Kütt, Lauri & Astapov, Victor & Daniel, Kamran & Jawad, Muhammad & Husev, Oleksandr & Rosin, Argo & Martins, João, 2024. "Enhancing PV hosting capacity and mitigating congestion in distribution networks with deep learning based PV forecasting and battery management," Applied Energy, Elsevier, vol. 372(C).
    6. Karipoğlu, Fatih & Denizli, Osmancan, 2025. "Towards renewable energy islands in Türkiye: Potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    7. Asadi Aghajari, H. & Niknam, T. & Shasadeghi, M. & Sharifhosseini, S.M. & Taabodi, M.H. & Sheybani, Ehsan & Javidi, Giti & Pourbehzadi, Motahareh, 2025. "Analyzing complexities of integrating Renewable Energy Sources into Smart Grid: A comprehensive review," Applied Energy, Elsevier, vol. 383(C).
    8. Zhipeng Jing & Lipo Gao & Yu Mu & Dong Liang, 2024. "Flexibility-Constrained Energy Storage System Placement for Flexible Interconnected Distribution Networks," Sustainability, MDPI, vol. 16(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa, 2021. "Impact of thermal masses on the peak load in district heating systems," Energy, Elsevier, vol. 214(C).
    2. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    3. Firouzmakan, Pouya & Hooshmand, Rahmat-Allah & Bornapour, Mosayeb & Khodabakhshian, Amin, 2019. "A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 355-368.
    4. Mariuzzo, Ivan & Fina, Bernadette & Stroemer, Stefan & Corinaldesi, Carlo & Raugi, Marco, 2025. "Grid-friendly optimization of energy communities through enhanced multiple participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    5. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    6. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    7. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    8. Tao Xu & He Meng & Jie Zhu & Wei Wei & He Zhao & Han Yang & Zijin Li & Yuhan Wu, 2021. "Optimal Capacity Allocation of Energy Storage in Distribution Networks Considering Active/Reactive Coordination," Energies, MDPI, vol. 14(6), pages 1-24, March.
    9. Baxter L. M. Williams & R. J. Hooper & Daniel Gnoth & J. G. Chase, 2025. "Residential Electricity Demand Modelling: Validation of a Behavioural Agent-Based Approach," Energies, MDPI, vol. 18(6), pages 1-22, March.
    10. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    11. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).
    12. Issah Babatunde Majeed & Nnamdi I. Nwulu, 2022. "Impact of Reverse Power Flow on Distributed Transformers in a Solar-Photovoltaic-Integrated Low-Voltage Network," Energies, MDPI, vol. 15(23), pages 1-19, December.
    13. Anurag Gautam & Ibraheem & Gulshan Sharma & Mohammad F. Ahmer & Narayanan Krishnan, 2023. "Methods and Methodologies for Congestion Alleviation in the DPS: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-28, February.
    14. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    15. Bizhan Nemati & Seyed Mohammad Hassan Hosseini, 2025. "An optimal coordinated decision-making model for planning the coordinated expansion and operation of multi microgrids in active distribution network," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 6467-6505, March.
    16. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    17. Neetzow, Paul & Mendelevitch, Roman & Siddiqui, Sauleh, 2019. "Modeling coordination between renewables and grid: Policies to mitigate distribution grid constraints using residential PV-battery systems," Energy Policy, Elsevier, vol. 132(C), pages 1017-1033.
    18. Aktas, Ahmet & Erhan, Koray & Özdemir, Sule & Özdemir, Engin, 2018. "Dynamic energy management for photovoltaic power system including hybrid energy storage in smart grid applications," Energy, Elsevier, vol. 162(C), pages 72-82.
    19. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    20. Zang, Xingyu & Li, Hangxin & Wang, Shengwei, 2025. "Levelized cost quantification of energy flexibility in high-density cities and evaluation of demand-side technologies for providing grid services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.