IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v331y2023ics0306261922015276.html
   My bibliography  Save this article

Performance evaluation of SSCI damping controller based on the elastic energy equivalent system

Author

Listed:
  • Han, Jiangbei
  • Liu, Chengxi

Abstract

This paper proposes an Elastic Energy Equivalent System (EEES) for evaluating the performance of sub-synchronous control interaction (SSCI) damping controller. The proposed EEES can evaluate the dynamic energy exchange and dissipation of the SSCI damping controllers under various operating conditions, and pinpoint the sensitive control parameters at different oscillation frequencies in advance. First, inspired by the vibration of spring-damper system, we establish the EEES to imitate the SSCI, so as to explore the elastic energy composition of the power system integrated with the doubly-fed induction generator (DFIG). Second, the equivalent damper and spring of EEES are used to model the controllable dissipated and potential energy for the converter controller respectively, so criteria are developed to evaluate the effectiveness of the converter controller for stabilizing the system. Third, the extended state observer-based sub-synchronous damping controller (ESSDC) is proposed to mitigate the SSCI, whose performance and parameters’ sensitivities are evaluated by the proposed EEES. Finally, the accuracy of the proposed EEES and the effectiveness of the ESSDC are validated on a DFIG-integrated power system and Guyuan wind farms. The results show that the proposed ESSDC performs better than conventional controllers with satisfactory damping and robustness under the variation of operating conditions.

Suggested Citation

  • Han, Jiangbei & Liu, Chengxi, 2023. "Performance evaluation of SSCI damping controller based on the elastic energy equivalent system," Applied Energy, Elsevier, vol. 331(C).
  • Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922015276
    DOI: 10.1016/j.apenergy.2022.120270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shair, Jan & Xie, Xiaorong & Yan, Gangui, 2019. "Mitigating subsynchronous control interaction in wind power systems: Existing techniques and open challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 330-346.
    2. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    3. Shair, Jan & Xie, Xiaorong & Liu, Wei & Li, Xuan & Li, Haozhi, 2021. "Modeling and stability analysis methods for investigating subsynchronous control interaction in large-scale wind power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Virulkar, V.B. & Gotmare, G.V., 2016. "Sub-synchronous resonance in series compensated wind farm: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1010-1029.
    5. Shair, Jan & Xie, Xiaorong & Wang, Luping & Liu, Wei & He, Jingbo & Liu, Hui, 2019. "Overview of emerging subsynchronous oscillations in practical wind power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 159-168.
    6. Xia, S.W. & Bu, S.Q. & Zhang, X. & Xu, Y. & Zhou, B. & Zhu, J.B., 2018. "Model reduction strategy of doubly-fed induction generator-based wind farms for power system small-signal rotor angle stability analysis," Applied Energy, Elsevier, vol. 222(C), pages 608-620.
    7. Xie, Da & Lu, Yupu & Sun, Junbo & Gu, Chenghong, 2017. "Small signal stability analysis for different types of PMSGs connected to the grid," Renewable Energy, Elsevier, vol. 106(C), pages 149-164.
    8. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lei & Xie, Xiaorong & Li, Xiang & Yang, Lei & Cao, Xin, 2023. "Online SSO stability analysis-based oscillation parameter estimation in converter-tied grids," Applied Energy, Elsevier, vol. 351(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. He, Xiuqiang & Geng, Hua & Mu, Gang, 2021. "Modeling of wind turbine generators for power system stability studies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Xia, S.W. & Bu, S.Q. & Zhang, X. & Xu, Y. & Zhou, B. & Zhu, J.B., 2018. "Model reduction strategy of doubly-fed induction generator-based wind farms for power system small-signal rotor angle stability analysis," Applied Energy, Elsevier, vol. 222(C), pages 608-620.
    4. Vinay Sewdien & Xiongfei Wang & Jose Rueda Torres & Mart van der Meijden, 2020. "Critical Review of Mitigation Solutions for SSO in Modern Transmission Grids," Energies, MDPI, vol. 13(13), pages 1-20, July.
    5. Shair, Jan & Xie, Xiaorong & Liu, Wei & Li, Xuan & Li, Haozhi, 2021. "Modeling and stability analysis methods for investigating subsynchronous control interaction in large-scale wind power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Shair, Jan & Xie, Xiaorong & Yan, Gangui, 2019. "Mitigating subsynchronous control interaction in wind power systems: Existing techniques and open challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 330-346.
    7. Chen, Lei & Xie, Xiaorong & He, Jingbo & Xu, Tao & Xu, Dechao & Ma, Ningning, 2023. "Wideband oscillation monitoring in power systems with high-penetration of renewable energy sources and power electronics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Zhou, Yu & Li, Zhengshuo & Wang, Guangrui, 2021. "Study on leveraging wind farms' robust reactive power range for uncertain power system reactive power optimization," Applied Energy, Elsevier, vol. 298(C).
    9. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    10. Shaojian Song & Peichen Guan & Bin Liu & Yimin Lu & Huihwang Goh, 2021. "Impedance Modeling and Stability Analysis of DFIG-Based Wind Energy Conversion System Considering Frequency Coupling," Energies, MDPI, vol. 14(11), pages 1-22, June.
    11. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    12. Qu, Kaiping & Shi, Shouyuan & Yu, Tao & Wang, Wenrui, 2019. "A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control," Applied Energy, Elsevier, vol. 240(C), pages 630-645.
    13. Giorgio M. Giannuzzi & Viktoriya Mostova & Cosimo Pisani & Salvatore Tessitore & Alfredo Vaccaro, 2022. "Enabling Technologies for Enhancing Power System Stability in the Presence of Converter-Interfaced Generators," Energies, MDPI, vol. 15(21), pages 1-13, October.
    14. Blandy Pamplona Solis & Julio César Cruz Argüello & Leopoldo Gómez Barba & Mayra Polett Gurrola & Zakaryaa Zarhri & Danna Lizeth TrejoArroyo, 2019. "Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    15. Uvini Perera & Amanullah Maung Than Oo & Ramon Zamora, 2022. "Sub Synchronous Oscillations under High Penetration of Renewables—A Review of Existing Monitoring and Damping Methods, Challenges, and Research Prospects," Energies, MDPI, vol. 15(22), pages 1-23, November.
    16. Junxi Wang & Qi Jia & Gangui Yan & Kan Liu & Dan Wang, 2021. "Analysis of Subsynchronous Torsional of Wind–Thermal Bundled System Transmitted via HVDC Based on Signal Injection Method," Energies, MDPI, vol. 14(2), pages 1-21, January.
    17. Zhang, Qi & Wu, Xifeng & Chen, Yu, 2022. "Is economic crisis an opportunity for realizing the low-carbon transition? A simulation study on the interaction between economic cycle and energy regulation policy," Energy Policy, Elsevier, vol. 168(C).
    18. Zong, Haoxiang & Lyu, Jing & Wang, Xiao & Zhang, Chen & Zhang, Ruifang & Cai, Xu, 2021. "Grey box aggregation modeling of wind farm for wideband oscillations analysis," Applied Energy, Elsevier, vol. 283(C).
    19. Wang, Haibing & Zheng, Tianhang & Sun, Weiqing & Khan, Muhammad Qasim, 2023. "Research on the pricing strategy of park electric vehicle agent considering carbon trading," Applied Energy, Elsevier, vol. 340(C).
    20. Yuuki Yoshimoto & Koki Kishimoto & Kanchan Kumar Sen & Takako Mochida & Andrew Chapman, 2023. "Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches," Sustainability, MDPI, vol. 15(17), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922015276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.