IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922011606.html
   My bibliography  Save this article

A standardized methodology for economic and carbon footprint assessment of CO2 to transport fuels: Comparison of novel bicarbonate electrolysis with competing pathways

Author

Listed:
  • Kannangara, Miyuru
  • Shadbahr, Jalil
  • Vasudev, Madhav
  • Yang, Jianjun
  • Zhang, Lei
  • Bensebaa, Farid
  • Lees, Eric
  • Simpson, Grace
  • Berlinguette, Curtis
  • Cai, Jingjing
  • Nishikawa, Emily
  • McCoy, Sean
  • MacLean, Heather
  • Bergerson, Joule

Abstract

Early evaluation of carbon capture and utilization (CCU) pathways in terms of cost and emission reductions is critical in guiding future R&D and commercialization. However, such evaluation is challenging due to varying technology readiness levels (TRL) of pathways, unavailability of cost and emission data for new technologies and uncertainty of performance parameters of lab scale technologies. In this study, we propose a standardized methodology that allow comparing synthetic fuel production pathways based on early stage lab scale CO2 electrolysis technologies with mature CCU technologies and incumbent technologies. This methodology provides guidelines for defining pathways, modeling and cost and carbon footprint (CF) assessment supported by a bottom-up framework to scale- up the costs and CF of lab scale technologies. We apply the developed methodology to evaluate Fischer-Tropsh synthesis (FTS) fuel production pathways based on bicarbonate electrolysis, a novel early stage CO2 electroreduction technology with integrated CO2 capture, and reverse water gas shift (RWGS) reaction, a mature thermocatalytic CO2 conversion technology. The cost of diesel fuel production using RWGS and bicarbonate electrolysis pathways were 1.7 $/L and 1.5 $/L, respectively, which is more than 140% of current cost of diesel. Nevertheless, both pathways were able to achieve significant emissions reductions with bicarbonate electrolysis reducing 90% and RWGS reducing at 70% compared to conventional diesel. Based on the uncertainties of calculated cost, neither pathway is more economically competitive than the other. However bicarbonate electrolysis pathway offer more opportunities for emission reduction as most of its energy demand can be provided by renewable electricity. RWGS pathway with relatively higher thermal energy demand will need to rely on high level of energy recovery and integration to achieve similar emission reductions.

Suggested Citation

  • Kannangara, Miyuru & Shadbahr, Jalil & Vasudev, Madhav & Yang, Jianjun & Zhang, Lei & Bensebaa, Farid & Lees, Eric & Simpson, Grace & Berlinguette, Curtis & Cai, Jingjing & Nishikawa, Emily & McCoy, S, 2022. "A standardized methodology for economic and carbon footprint assessment of CO2 to transport fuels: Comparison of novel bicarbonate electrolysis with competing pathways," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011606
    DOI: 10.1016/j.apenergy.2022.119897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922011606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cuéllar-Franca, Rosa & García-Gutiérrez, Pelayo & Dimitriou, Ioanna & Elder, Rachael H. & Allen, Ray W.K. & Azapagic, Adisa, 2019. "Utilising carbon dioxide for transport fuels: The economic and environmental sustainability of different Fischer-Tropsch process designs," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    3. Jonggeol Na & Bora Seo & Jeongnam Kim & Chan Woo Lee & Hyunjoo Lee & Yun Jeong Hwang & Byoung Koun Min & Dong Ki Lee & Hyung-Suk Oh & Ung Lee, 2019. "General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. Kreutz, Thomas G. & Larson, Eric D. & Elsido, Cristina & Martelli, Emanuele & Greig, Chris & Williams, Robert H., 2020. "Techno-economic prospects for producing Fischer-Tropsch jet fuel and electricity from lignite and woody biomass with CO2 capture for EOR," Applied Energy, Elsevier, vol. 279(C).
    5. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    6. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choe, Changgwon & Cheon, Seunghyun & Kim, Heehyang & Lim, Hankwon, 2023. "Mitigating climate change for negative CO2 emission via syngas methanation: Techno-economic and life-cycle assessments of renewable methane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Gutiérrez, R.E. & Guerra, K. & Haro, P., 2022. "Exploring the techno-economic feasibility of new bioeconomy concepts: Solar-assisted thermochemical biorefineries," Applied Energy, Elsevier, vol. 322(C).
    3. Michael Metzger & Mathias Duckheim & Marco Franken & Hans Joerg Heger & Matthias Huber & Markus Knittel & Till Kolster & Martin Kueppers & Carola Meier & Dieter Most & Simon Paulus & Lothar Wyrwoll & , 2021. "Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System," Energies, MDPI, vol. 14(3), pages 1-28, January.
    4. Amigun, Bamikole & Gorgens, Johann & Knoetze, Hansie, 2010. "Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance," Energy Policy, Elsevier, vol. 38(1), pages 312-322, January.
    5. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    6. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    9. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    10. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    11. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    12. Toktarova, Alla & Walter, Viktor & Göransson, Lisa & Johnsson, Filip, 2022. "Interaction between electrified steel production and the north European electricity system," Applied Energy, Elsevier, vol. 310(C).
    13. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    14. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    15. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    16. Christoph Sejkora & Johannes Lindorfer & Lisa Kühberger & Thomas Kienberger, 2021. "Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria," Energies, MDPI, vol. 14(19), pages 1-38, October.
    17. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).
    18. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    19. Vitasari, Caecilia R. & Jurascik, Martin & Ptasinski, Krzysztof J., 2011. "Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock," Energy, Elsevier, vol. 36(6), pages 3825-3837.
    20. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.