IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v322y2022ics0306261922007991.html
   My bibliography  Save this article

Modeling the spatiotemporal dynamics of global electric power consumption (1992–2019) by utilizing consistent nighttime light data from DMSP-OLS and NPP-VIIRS

Author

Listed:
  • Hu, Ting
  • Wang, Ting
  • Yan, Qingyun
  • Chen, Tiexi
  • Jin, Shuanggen
  • Hu, Jun

Abstract

Adequate and up-to-date knowledge of the spatiotemporal dynamics of electricity power consumption (EPC) is important for the sustainable use of global electricity power resources. However, global EPC patterns were not clear after Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) in 2013 due to the significant differences between Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) and DMSP-OLS. In this paper, global EPC patterns in the recent decade are investigated and assessed for the first time by the proposed locally adaptive method with integrating two nighttime light (NTL) images to global pixel-level EPC from 1992 to 2019. The geospatial dataset of built-up area density (BUAD) is adopted with a higher spatial resolution and more direct relation to human activities. A two-step regression method is designed to simulate DMSP-like images after 2013, based on the inter-annual relationships of provincial-level VIIRS. With this consistent nighttime light dataset, pixel-level EPC over the 28 years are estimated for the first time, and then the spatiotemporal dynamics of EPC are investigated from global, continental, to national scales. The obtained EPC estimates are of satisfactory accuracy in 92.6% of the countries with a MARE (Mean of the Absolute Relative Error) of less than 20%. Over these 28 years, Japan, South Korea, and China experienced high proportion of EPC high-growth. These results provide reliable scientific basis for exploring the spatial pattern and temporal variations of global EPC, especially for the latest years.

Suggested Citation

  • Hu, Ting & Wang, Ting & Yan, Qingyun & Chen, Tiexi & Jin, Shuanggen & Hu, Jun, 2022. "Modeling the spatiotemporal dynamics of global electric power consumption (1992–2019) by utilizing consistent nighttime light data from DMSP-OLS and NPP-VIIRS," Applied Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007991
    DOI: 10.1016/j.apenergy.2022.119473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922007991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parshall, Lily & Gurney, Kevin & Hammer, Stephen A. & Mendoza, Daniel & Zhou, Yuyu & Geethakumar, Sarath, 2010. "Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States," Energy Policy, Elsevier, vol. 38(9), pages 4765-4782, September.
    2. Shiu, Alice & Lam, Pun-Lee, 2004. "Electricity consumption and economic growth in China," Energy Policy, Elsevier, vol. 32(1), pages 47-54, January.
    3. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    4. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Yang, Chengshu & Li, Linyi & Huang, Chang & Chen, Zuoqi & Liu, Rui & Wu, Jianping, 2016. "Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 184(C), pages 450-463.
    5. Lean, Hooi Hooi & Smyth, Russell, 2010. "CO2 emissions, electricity consumption and output in ASEAN," Applied Energy, Elsevier, vol. 87(6), pages 1858-1864, June.
    6. Lu, Linlin & Weng, Qihao & Xie, Yanhua & Guo, Huadong & Li, Qingting, 2019. "An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery," Energy, Elsevier, vol. 189(C).
    7. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    8. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    9. Christopher Yeh & Anthony Perez & Anne Driscoll & George Azzari & Zhongyi Tang & David Lobell & Stefano Ermon & Marshall Burke, 2020. "Using publicly available satellite imagery and deep learning to understand economic well-being in Africa," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    10. Hu, Ting & Huang, Xin, 2019. "A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 240(C), pages 778-792.
    11. Ziyang Cao & Zhifeng Wu & Yaoqiu Kuang & Ningsheng Huang & Meng Wang, 2016. "Coupling an Intercalibration of Radiance-Calibrated Nighttime Light Images and Land Use/Cover Data for Modeling and Analyzing the Distribution of GDP in Guangdong, China," Sustainability, MDPI, vol. 8(2), pages 1-18, January.
    12. Liu, Liwei & Sun, Xiaoru & Chen, Chuxiang & Zhao, Erdong, 2016. "How will auctioning impact on the carbon emission abatement cost of electric power generation sector in China?," Applied Energy, Elsevier, vol. 168(C), pages 594-609.
    13. Al-Garni, Ahmed Z. & Zubair, Syed M. & Nizami, Javeed S., 1994. "A regression model for electric-energy-consumption forecasting in Eastern Saudi Arabia," Energy, Elsevier, vol. 19(10), pages 1043-1049.
    14. Jasiński, Tomasz, 2019. "Modeling electricity consumption using nighttime light images and artificial neural networks," Energy, Elsevier, vol. 179(C), pages 831-842.
    15. Gambhir, Ajay & Napp, Tamaryn A. & Emmott, Christopher J.M. & Anandarajah, Gabrial, 2014. "India's CO2 emissions pathways to 2050: Energy system, economic and fossil fuel impacts with and without carbon permit trading," Energy, Elsevier, vol. 77(C), pages 791-801.
    16. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    17. Xiao, Hongwei & Ma, Zhongyu & Mi, Zhifu & Kelsey, John & Zheng, Jiali & Yin, Weihua & Yan, Min, 2018. "Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data," Applied Energy, Elsevier, vol. 231(C), pages 1070-1078.
    18. Huang, Weilong & Ma, Ding & Chen, Wenying, 2017. "Connecting water and energy: Assessing the impacts of carbon and water constraints on China’s power sector," Applied Energy, Elsevier, vol. 185(P2), pages 1497-1505.
    19. Zhang, Wenwen & Robinson, Caleb & Guhathakurta, Subhrajit & Garikapati, Venu M. & Dilkina, Bistra & Brown, Marilyn A. & Pendyala, Ram M., 2018. "Estimating residential energy consumption in metropolitan areas: A microsimulation approach," Energy, Elsevier, vol. 155(C), pages 162-173.
    20. Xie, Yanhua & Weng, Qihao, 2016. "Detecting urban-scale dynamics of electricity consumption at Chinese cities using time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System) nighttime light imageries," Energy, Elsevier, vol. 100(C), pages 177-189.
    21. Li, Shuyi & Cheng, Liang & Liu, Xiaoqiang & Mao, Junya & Wu, Jie & Li, Manchun, 2019. "City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data," Energy, Elsevier, vol. 189(C).
    22. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    23. Wang, Jiaxin & Lu, Feng, 2021. "Modeling the electricity consumption by combining land use types and landscape patterns with nighttime light imagery," Energy, Elsevier, vol. 234(C).
    24. Al-mulali, Usama & Binti Che Sab, Che Normee & Fereidouni, Hassan Gholipour, 2012. "Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission," Energy, Elsevier, vol. 46(1), pages 156-167.
    25. Mahalingam, Brinda & Orman, Wafa Hakim, 2018. "GDP and energy consumption: A panel analysis of the US," Applied Energy, Elsevier, vol. 213(C), pages 208-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luwei Wang & Yizhen Zhang & Qing Zhao & Chuantang Ren & Yu Fu & Tao Wang, 2023. "Horizontal CO 2 Compensation in the Yangtze River Delta Based on CO 2 Footprints and CO 2 Emissions Efficiency," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    2. Du, Mengbing & Ruan, Jianhui & Zhang, Li & Niu, Muchuan & Zhang, Zhe & Xia, Lang & Qian, Shuangyue & Chen, Chuchu, 2024. "China's local-level monthly residential electricity power consumption monitoring," Applied Energy, Elsevier, vol. 359(C).
    3. Bin Guo & Yi Bian & Lin Pei & Xiaowei Zhu & Dingming Zhang & Wencai Zhang & Xianan Guo & Qiuji Chen, 2022. "Identifying Population Hollowing Out Regions and Their Dynamic Characteristics across Central China," Sustainability, MDPI, vol. 14(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Ting & Huang, Xin, 2019. "A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 240(C), pages 778-792.
    2. Wang, Jiaxin & Lu, Feng, 2021. "Modeling the electricity consumption by combining land use types and landscape patterns with nighttime light imagery," Energy, Elsevier, vol. 234(C).
    3. Lu, Linlin & Weng, Qihao & Xie, Yanhua & Guo, Huadong & Li, Qingting, 2019. "An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery," Energy, Elsevier, vol. 189(C).
    4. Du, Mengbing & Ruan, Jianhui & Zhang, Li & Niu, Muchuan & Zhang, Zhe & Xia, Lang & Qian, Shuangyue & Chen, Chuchu, 2024. "China's local-level monthly residential electricity power consumption monitoring," Applied Energy, Elsevier, vol. 359(C).
    5. Zhong, Liang & Liu, Xiaosheng & Ao, Jianfeng, 2022. "Spatiotemporal dynamics evaluation of pixel-level gross domestic product, electric power consumption, and carbon emissions in countries along the belt and road," Energy, Elsevier, vol. 239(PA).
    6. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    7. Shi, Kaifang & Yu, Bailang & Huang, Chang & Wu, Jianping & Sun, Xiufeng, 2018. "Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road," Energy, Elsevier, vol. 150(C), pages 847-859.
    8. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    9. Yang Zhong & Aiwen Lin & Zhigao Zhou & Feiyan Chen, 2018. "Spatial Pattern Evolution and Optimization of Urban System in the Yangtze River Economic Belt, China, Based on DMSP-OLS Night Light Data," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    10. Yongxing Li & Wei Guo & Peixian Li & Xuesheng Zhao & Jinke Liu, 2023. "Exploring the Spatiotemporal Dynamics of CO 2 Emissions through a Combination of Nighttime Light and MODIS NDVI Data," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    11. Shengnan Jiang & Guoen Wei & Zhenke Zhang & Yue Wang & Minghui Xu & Qing Wang & Priyanko Das & Binglin Liu, 2020. "Detecting the Dynamics of Urban Growth in Africa Using DMSP/OLS Nighttime Light Data," Land, MDPI, vol. 10(1), pages 1-19, December.
    12. Naeher,Dominik & Narayanan,Raghavan & Ziulu,Virginia, 2021. "Impacts of Energy Efficiency Projects in Developing Countries : Evidence from a SpatialDifference-in-Differences Analysis in Malawi," Policy Research Working Paper Series 9842, The World Bank.
    13. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    14. Gao, Ming & Ma, Ke & Yu, Jie, 2023. "The characteristics and drivers of China’s city-level urban-rural activity sectors’ carbon intensity gap during urban land expansion," Energy Policy, Elsevier, vol. 181(C).
    15. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    16. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Yang, Chengshu & Li, Linyi & Huang, Chang & Chen, Zuoqi & Liu, Rui & Wu, Jianping, 2016. "Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 184(C), pages 450-463.
    17. Hui Wang & Guifen Liu & Kaifang Shi, 2019. "What Are the Driving Forces of Urban CO 2 Emissions in China? A Refined Scale Analysis between National and Urban Agglomeration Levels," IJERPH, MDPI, vol. 16(19), pages 1-19, September.
    18. Tianjiao Yang & Jing Liu & Haibo Mi & Zhicheng Cao & Yiting Wang & Huichao Han & Jiahui Luan & Zhaoxuan Wang, 2022. "An Estimating Method for Carbon Emissions of China Based on Nighttime Lights Remote Sensing Satellite Images," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
    19. Li, Shuyi & Cheng, Liang & Liu, Xiaoqiang & Mao, Junya & Wu, Jie & Li, Manchun, 2019. "City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data," Energy, Elsevier, vol. 189(C).
    20. Yongguang Zhu & Deyi Xu & Saleem H. Ali & Ruiyang Ma & Jinhua Cheng, 2019. "Can Nighttime Light Data Be Used to Estimate Electric Power Consumption? New Evidence from Causal-Effect Inference," Energies, MDPI, vol. 12(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.