IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v309y2022ics0306261921016433.html
   My bibliography  Save this article

Energy saving of buildings for reducing carbon dioxide emissions using novel dendrite net integrated adaptive mean square gradient

Author

Listed:
  • Han, Yongming
  • Li, Jingze
  • Lou, Xiaoyi
  • Fan, Chenyu
  • Geng, Zhiqiang

Abstract

Artificial neural networks have been widely applied in construction industries. Due to dendrites of biological neurons participating in the pre-calculation of neural networks, the structure of the traditional artificial neural network needs to be adjusted subjectively. Thus, a novel dendrite net based on the adaptive mean square gradient is proposed in this paper. The energy consumption of buildings is predicted and analyzed by the proposed method to cut the carbon dioxide emissions. The adaptive mean square gradient method is used to update the weight matrix of the dendrite net method, which can avoid errors caused by selecting hidden layer nodes to improve the prediction accuracy of the proposed method. Finally, the proposed method is used to energy saving and emission reducing of the construction industry. Compared with other methods, the experimental results show the availability of the proposed method. Through predicting the heating and cooling loads based on the proposed method, the construction plan is adjusted to decrease the energy consumption of buildings. Moreover, the appliances energy consumption is predicted and analyzed by the proposed method to improve energy efficiency and cut carbon dioxide emissions.

Suggested Citation

  • Han, Yongming & Li, Jingze & Lou, Xiaoyi & Fan, Chenyu & Geng, Zhiqiang, 2022. "Energy saving of buildings for reducing carbon dioxide emissions using novel dendrite net integrated adaptive mean square gradient," Applied Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016433
    DOI: 10.1016/j.apenergy.2021.118409
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921016433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118409?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    2. Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
    3. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    4. Geng, Zhiqiang & Zeng, Rongfu & Han, Yongming & Zhong, Yanhua & Fu, Hua, 2019. "Energy efficiency evaluation and energy saving based on DEA integrated affinity propagation clustering: Case study of complex petrochemical industries," Energy, Elsevier, vol. 179(C), pages 863-875.
    5. Lange, Jelto & Kaltschmitt, Martin, 2022. "Probabilistic day-ahead forecast of available thermal storage capacities in residential households," Applied Energy, Elsevier, vol. 306(PA).
    6. Lu, Mengxue & Lai, Joseph, 2020. "Review on carbon emissions of commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    8. Hu, Jingfan & Zheng, Wandong & Zhang, Sirui & Li, Hao & Liu, Zijian & Zhang, Guo & Yang, Xu, 2021. "Thermal load prediction and operation optimization of office building with a zone-level artificial neural network and rule-based control," Applied Energy, Elsevier, vol. 300(C).
    9. Han, Yongming & Lou, Xiaoyi & Feng, Mingfei & Geng, Zhiqiang & Chen, Liangchao & Ping, Weiying & Lu, Gang, 2022. "Energy consumption analysis and saving of buildings based on static and dynamic input-output models," Energy, Elsevier, vol. 239(PC).
    10. Han, Yongming & Liu, Shuang & Cong, Di & Geng, Zhiqiang & Fan, Jinzhen & Gao, Jingyang & Pan, Tingrui, 2021. "Resource optimization model using novel extreme learning machine with t-distributed stochastic neighbor embedding: Application to complex industrial processes," Energy, Elsevier, vol. 225(C).
    11. Streltsov, Artem & Malof, Jordan M. & Huang, Bohao & Bradbury, Kyle, 2020. "Estimating residential building energy consumption using overhead imagery," Applied Energy, Elsevier, vol. 280(C).
    12. Yang, Yingchun & Liu, Jianghua & Lin, Yingying & Li, Qiongyuan, 2019. "The impact of urbanization on China’s residential energy consumption," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 170-182.
    13. Han, Yongming & Fan, Chenyu & Geng, Zhiqiang & Ma, Bo & Cong, Di & Chen, Kai & Yu, Bin, 2020. "Energy efficient building envelope using novel RBF neural network integrated affinity propagation," Energy, Elsevier, vol. 209(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaping Wu & Xiaolong Wu & Yuanwu Xu & Yongjun Cheng & Xi Li, 2023. "A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    2. Xuemei Zhang & Jiawei Hu & Suqin Sun & Guohu Qi, 2022. "Extended Warranty Strategy and Its Environment Impact of Remanufactured Supply Chain," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    3. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    4. Es-sakali, Niima & Charai, Mouatassim & Idrissi Kaitouni, Samir & Ait Laasri, Imad & Mghazli, Mohamed Oualid & Cherkaoui, Moha & Pfafferott, Jens & Ukjoo, Sung, 2023. "Energy efficiency and hygrothermal performance of hemp clay walls for Moroccan residential buildings: An integrated lab-scale, in-situ and simulation-based assessment," Applied Energy, Elsevier, vol. 352(C).
    5. Gang Liu & Yajing Pang & Shuai Yin & Xiaoke Niu & Jing Wang & Hong Wan, 2022. "Dendrite Net with Acceleration Module for Faster Nonlinear Mapping and System Identification," Mathematics, MDPI, vol. 10(23), pages 1-14, November.
    6. Han, Yongming & Hao, Yuhang & Feng, Mingfei & Chen, Kai & Xing, Rumeng & Liu, Yuandong & Lin, Xiaoyong & Ma, Bo & Fan, Jinzhen & Geng, Zhiqiang, 2024. "Novel STAttention GraphWaveNet model for residential household appliance prediction and energy structure optimization," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    2. Jiang, Yue & Meng, Hao & Chen, Guanpeng & Yang, Congnan & Xu, Xiaojun & Zhang, Lei & Xu, Haijun, 2022. "Differential-steering based path tracking control and energy-saving torque distribution strategy of 6WID unmanned ground vehicle," Energy, Elsevier, vol. 254(PA).
    3. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    4. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 257(C).
    5. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    6. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    7. Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
    8. Daeil Lee & Seoryong Koo & Inseok Jang & Jonghyun Kim, 2022. "Comparison of Deep Reinforcement Learning and PID Controllers for Automatic Cold Shutdown Operation," Energies, MDPI, vol. 15(8), pages 1-25, April.
    9. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    10. Robert Jane & Tae Young Kim & Samantha Rose & Emily Glass & Emilee Mossman & Corey James, 2022. "Developing AI/ML Based Predictive Capabilities for a Compression Ignition Engine Using Pseudo Dynamometer Data," Energies, MDPI, vol. 15(21), pages 1-49, October.
    11. Yang, Dongpo & Liu, Tong & Song, Dafeng & Zhang, Xuanming & Zeng, Xiaohua, 2023. "A real time multi-objective optimization Guided-MPC strategy for power-split hybrid electric bus based on velocity prediction," Energy, Elsevier, vol. 276(C).
    12. Zhengyu Yao & Hwan-Sik Yoon & Yang-Ki Hong, 2023. "Control of Hybrid Electric Vehicle Powertrain Using Offline-Online Hybrid Reinforcement Learning," Energies, MDPI, vol. 16(2), pages 1-18, January.
    13. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
    14. Li, Shuangqi & He, Hongwen & Zhao, Pengfei, 2021. "Energy management for hybrid energy storage system in electric vehicle: A cyber-physical system perspective," Energy, Elsevier, vol. 230(C).
    15. Yao, Yongming & Wang, Jie & Zhou, Zhicong & Li, Hang & Liu, Huiying & Li, Tianyu, 2023. "Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles," Energy, Elsevier, vol. 262(PA).
    16. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    17. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
    18. Kong, Yan & Xu, Nan & Liu, Qiao & Sui, Yan & Yue, Fenglai, 2023. "A data-driven energy management method for parallel PHEVs based on action dependent heuristic dynamic programming (ADHDP) model," Energy, Elsevier, vol. 265(C).
    19. Liu, Bo & Sun, Chao & Wang, Bo & Liang, Weiqiang & Ren, Qiang & Li, Junqiu & Sun, Fengchun, 2022. "Bi-level convex optimization of eco-driving for connected Fuel Cell Hybrid Electric Vehicles through signalized intersections," Energy, Elsevier, vol. 252(C).
    20. Connor Scott & Mominul Ahsan & Alhussein Albarbar, 2021. "Machine Learning Based Vehicle to Grid Strategy for Improving the Energy Performance of Public Buildings," Sustainability, MDPI, vol. 13(7), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.