IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v294y2021ics0306261921003883.html
   My bibliography  Save this article

Analysis of the impact of automatic shading control scenarios on occupant’s comfort and energy load

Author

Listed:
  • Tabadkani, Amir
  • Roetzel, Astrid
  • Xian Li, Hong
  • Tsangrassoulis, Aris
  • Attia, Shady

Abstract

Building envelopes should be responsive to boundary conditions changing in short-time, daily, or seasonal patterns. To this end, adaptive facades provide the ability to react, or benefit from, outdoor fluctuations and dynamic indoor requirements. On the other hand, the parallel trend of developing new technologies to control their performance, make adaptive facades more applicable to counterbalance both user’s comfort and building energy load. This goal can be met using active control mechanisms, either manually or automatically. Automatic shading controls require indoor/outdoor signal inputs to operate a shading system. However, in the literature, there is no consent on the effectiveness of automatic shading control strategies and all of the studies were investigated within specific environmental conditions. Therefore, this paper aims to compare the most used control functions and their implications on user comfort and energy load in different climate zones. To this end, EnergyPlus was used as a simulation platform to employ Energy Management System (EMS) for linking sensors, actuators to the control logic of adaptive venetian blinds. Then, a brute-force method was performed through Ladybug-tools to conduct 15,390 iterations parametrically. Results showed that climatic conditions impact the shading control scenario significantly, and the optimum scenario was an open-loop algorithm based on direct solar radiation due to the earlier activation of blind closure to block solar radiation while increasing lighting load at the same time.

Suggested Citation

  • Tabadkani, Amir & Roetzel, Astrid & Xian Li, Hong & Tsangrassoulis, Aris & Attia, Shady, 2021. "Analysis of the impact of automatic shading control scenarios on occupant’s comfort and energy load," Applied Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:appene:v:294:y:2021:i:c:s0306261921003883
    DOI: 10.1016/j.apenergy.2021.116904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921003883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlucci, Salvatore & Causone, Francesco & De Rosa, Francesco & Pagliano, Lorenzo, 2015. "A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1016-1033.
    2. Bustamante, Waldo & Uribe, Daniel & Vera, Sergio & Molina, Germán, 2017. "An integrated thermal and lighting simulation tool to support the design process of complex fenestration systems for office buildings," Applied Energy, Elsevier, vol. 198(C), pages 36-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaodong Wang & Yinan Yang & Xiaoyu Li & Chunying Li, 2022. "Modeling, Simulation, and Performance Analysis of a Liquid-Infill Tunable Window," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    2. Pinto, Maria Cristina & Crespi, Giulia & Dell'Anna, Federico & Becchio, Cristina, 2023. "Combining energy dynamic simulation and multi-criteria analysis for supporting investment decisions on smart shading devices in office buildings," Applied Energy, Elsevier, vol. 332(C).
    3. Hassan Bazazzadeh & Barbara Świt-Jankowska & Nasim Fazeli & Adam Nadolny & Behnaz Safar ali najar & Seyedeh sara Hashemi safaei & Mohammadjavad Mahdavinejad, 2021. "Efficient Shading Device as an Important Part of Daylightophil Architecture; a Designerly Framework of High-Performance Architecture for an Office Building in Tehran," Energies, MDPI, vol. 14(24), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    2. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    3. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    4. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    5. Ana Ogando-Martínez & Javier López-Gómez & Lara Febrero-Garrido, 2018. "Maintenance Factor Identification in Outdoor Lighting Installations Using Simulation and Optimization Techniques," Energies, MDPI, vol. 11(8), pages 1-13, August.
    6. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    7. Cui Li & Xuyun Yu & Zhengrong Li & Yi Zhao & Yuxin Liu & Xiangchao Lian & Yanbo Feng & Han Zhu, 2022. "Method for Determining Sensor Location for Automated Shading Control in Office Building," Energies, MDPI, vol. 15(13), pages 1-17, July.
    8. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    9. Dietz, Annelore & Vera, Sergio & Bustamante, Waldo & Flamant, Gilles, 2020. "Multi-objective optimization to balance thermal comfort and energy use in a mining camp located in the Andes Mountains at high altitude," Energy, Elsevier, vol. 199(C).
    10. Jie Li & Qichao Ban & Xueming (Jimmy) Chen & Jiawei Yao, 2019. "Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort," Energies, MDPI, vol. 12(4), pages 1-14, February.
    11. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
    12. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    13. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    14. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    15. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Ikuzwe, Alice & Ye, Xianming & Xia, Xiaohua, 2020. "Energy-maintenance optimization for retrofitted lighting system incorporating luminous flux degradation to enhance visual comfort," Applied Energy, Elsevier, vol. 261(C).
    17. Qing Yang & Nianping Li, 2022. "Subjective and Objective Evaluation of Shading on Thermal, Visual, and Acoustic Properties of Indoor Environments," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    18. Vincenzo Costanzo & Gianpiero Evola & Luigi Marletta & Fabiana Pistone Nascone, 2018. "Application of Climate Based Daylight Modelling to the Refurbishment of a School Building in Sicily," Sustainability, MDPI, vol. 10(8), pages 1-19, July.
    19. Galatioto, A. & Beccali, M., 2016. "Aspects and issues of daylighting assessment: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 852-860.
    20. Hong, Seongkwan & Choi, An-Seop & Sung, Minki, 2017. "Development and verification of a slat control method for a bi-directional PV blind," Applied Energy, Elsevier, vol. 206(C), pages 1321-1333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:294:y:2021:i:c:s0306261921003883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.