IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v173y2016icp406-417.html
   My bibliography  Save this article

An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings

Author

Listed:
  • Sehar, Fakeha
  • Pipattanasomporn, Manisa
  • Rahman, Saifur

Abstract

Demand Response (DR) applications along with strategically deployed solar photovoltaic (PV) and ice storage systems at the building level can help reduce building peak demand and energy consumption. Research shows that no work has been carried out to study the impact of integrated control of PV and ice storage on improving building operation and energy savings in demand responsive buildings. This can enable building operators to take advantage of different electricity prices and enable utilities to spread the demand over whole day. This research presents a model to study coordinated control of building end-use loads including cooling, lighting and plug loads, together with PV and ice storage integrated with packaged air conditioning (AC) units. This is used to study their impacts on peak demand and energy consumption in a simulated medium-sized office building located in Virginia/Maryland, U.S. area. Research findings provide an improved understanding of the contribution of DR, solar PV and ice storage systems towards reducing building peak electricity demand and energy consumption while being sensitive to occupant thermal and lighting needs.

Suggested Citation

  • Sehar, Fakeha & Pipattanasomporn, Manisa & Rahman, Saifur, 2016. "An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings," Applied Energy, Elsevier, vol. 173(C), pages 406-417.
  • Handle: RePEc:eee:appene:v:173:y:2016:i:c:p:406-417
    DOI: 10.1016/j.apenergy.2016.04.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916305074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.04.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A.M. Fogheri, 2015. "Energy Efficiency in Public Buildings," Rivista economica del Mezzogiorno, Società editrice il Mulino, issue 3-4, pages 763-784.
    2. Limmeechokchai, B. & Chungpaibulpatana, S., 2001. "Application of cool storage air-conditioning in the commercial sector: an integrated resource planning approach for power capacity expansion planning and emission reduction," Applied Energy, Elsevier, vol. 68(3), pages 289-300, March.
    3. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    4. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    5. Hasnain, Syed Mahmood & Alabbadi, Naif Mohammed, 2000. "Need for thermal-storage air-conditioning in Saudi Arabia," Applied Energy, Elsevier, vol. 65(1-4), pages 153-164, April.
    6. Carlucci, Salvatore & Causone, Francesco & De Rosa, Francesco & Pagliano, Lorenzo, 2015. "A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1016-1033.
    7. Wang, Xiaonan & Palazoglu, Ahmet & El-Farra, Nael H., 2015. "Operational optimization and demand response of hybrid renewable energy systems," Applied Energy, Elsevier, vol. 143(C), pages 324-335.
    8. Tzivanidis, C. & Antonopoulos, K.A. & Gioti, F., 2011. "Numerical simulation of cooling energy consumption in connection with thermostat operation mode and comfort requirements for the Athens buildings," Applied Energy, Elsevier, vol. 88(8), pages 2871-2884, August.
    9. Sehar, Fakeha & Pipattanasomporn, Manisa & Rahman, Saifur, 2016. "A peak-load reduction computing tool sensitive to commercial building environmental preferences," Applied Energy, Elsevier, vol. 161(C), pages 279-289.
    10. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "Multi-objective optimization of a mixed renewable system with demand-side management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1461-1468, June.
    11. Camps, Xavier & Velasco, Guillermo & de la Hoz, Jordi & Martín, Helena, 2015. "Contribution to the PV-to-inverter sizing ratio determination using a custom flexible experimental setup," Applied Energy, Elsevier, vol. 149(C), pages 35-45.
    12. Nolan, Sheila & O’Malley, Mark, 2015. "Challenges and barriers to demand response deployment and evaluation," Applied Energy, Elsevier, vol. 152(C), pages 1-10.
    13. Shih-Wen Hu & Li-Ju Chen & Vey Wang & Meng-Yi Tai & Lee-Jung Lu & Chiu-Yue Lin, 2015. "Energy Policies and Food Prices," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 11(1), pages 47-68, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assunção, André & Moura, Pedro S. & de Almeida, Aníbal T., 2016. "Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy," Applied Energy, Elsevier, vol. 181(C), pages 120-131.
    2. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    3. Sehar, Fakeha & Pipattanasomporn, Manisa & Rahman, Saifur, 2017. "Demand management to mitigate impacts of plug-in electric vehicle fast charge in buildings with renewables," Energy, Elsevier, vol. 120(C), pages 642-651.
    4. Giovani Almeida Dávi & José López de Asiain & Juan Solano & Estefanía Caamaño-Martín & César Bedoya, 2017. "Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management," Energies, MDPI, vol. 10(8), pages 1-24, August.
    5. Ding, Liping & Zhu, Yuxuan & Zheng, Longwei & Dai, Qiyao & Zhang, Zumeng, 2023. "What is the path of photovoltaic building (BIPV or BAPV) promotion? --The perspective of evolutionary games," Applied Energy, Elsevier, vol. 340(C).
    6. Kim, Dongsu & Cho, Heejin & Koh, Jaeyoon & Im, Piljae, 2020. "Net-zero energy building design and life-cycle cost analysis with air-source variable refrigerant flow and distributed photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    7. Bustos, Cristian & Watts, David & Ayala, Marysol, 2017. "Financial risk reduction in photovoltaic projects through ocean-atmospheric oscillations modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 548-568.
    8. Sharifah Nurain Syed Nasir & Norasikin Ahmad Ludin & Ahmad Afif Safwan Mohd Radzi & Mirratul Mukminah Junedi & Norhashimah Ramli & Anezah Marsan & Zul Fauzi Azlan Mohd & Muhamad Roszaini Roslan & Zulf, 2023. "Lockdown impact on energy consumption in university building," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 12051-12070, October.
    9. Wang, Pengcheng & Liu, Zhongbing & Liu, Ruimiao & Zhang, Feng & Zhang, Ling, 2023. "Energy flexibility of PCM-integrated building: Combination parameters design and operation control in multi-objective optimization considering different stakeholders," Energy, Elsevier, vol. 268(C).
    10. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
    11. Hannu S. Laine & Jyri Salpakari & Erin E. Looney & Hele Savin & Ian Marius Peters & Tonio Buonassisi, 2019. "Meeting Global Cooling Demand with Photovoltaics during the 21st Century," Papers 1902.10080, arXiv.org.
    12. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.
    13. Zhao, Bo & Ren, Junzhi & Chen, Jian & Lin, Da & Qin, Ruwen, 2020. "Tri-level robust planning-operation co-optimization of distributed energy storage in distribution networks with high PV penetration," Applied Energy, Elsevier, vol. 279(C).
    14. Chu, Wenfeng & Zhang, Yu & Wang, Donglin & He, Wei & Zhang, Sheng & Hu, Zhongting & Zhou, Jinzhi, 2023. "Capacity determination of renewable energy systems, electricity storage, and heat storage in grid-interactive buildings," Energy, Elsevier, vol. 285(C).
    15. Prasertsak Charoen & Nathavuth Kitbutrawat & Jasada Kudtongngam, 2022. "A Demand Response Implementation with Building Energy Management System," Energies, MDPI, vol. 15(3), pages 1-21, February.
    16. Luo, Na & Langevin, Jared & Chandra-Putra, Handi & Lee, Sang Hoon, 2022. "Quantifying the effect of multiple load flexibility strategies on commercial building electricity demand and services via surrogate modeling," Applied Energy, Elsevier, vol. 309(C).
    17. Nicolas A. Campbell & Patrick E. Phelan & Miguel Peinado-Guerrero & Jesus R. Villalobos, 2021. "Improved Air-Conditioning Demand Response of Connected Communities over Individually Optimized Buildings," Energies, MDPI, vol. 14(18), pages 1-17, September.
    18. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    19. Hao, Ling & Wei, Mingshan & Xu, Fei & Yang, Xiaochen & Meng, Jia & Song, Panpan & Min, Yong, 2020. "Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization," Applied Energy, Elsevier, vol. 261(C).
    20. Cui, Borui & Gao, Dian-ce & Xiao, Fu & Wang, Shengwei, 2017. "Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings," Applied Energy, Elsevier, vol. 201(C), pages 382-396.
    21. Chen, Yongbao & Xu, Peng & Chen, Zhe & Wang, Hongxin & Sha, Huajing & Ji, Ying & Zhang, Yongming & Dou, Qiang & Wang, Sheng, 2020. "Experimental investigation of demand response potential of buildings: Combined passive thermal mass and active storage," Applied Energy, Elsevier, vol. 280(C).
    22. Yingyue Li & Hongjun Li & Rui Miao & He Qi & Yi Zhang, 2023. "Energy–Environment–Economy (3E) Analysis of the Performance of Introducing Photovoltaic and Energy Storage Systems into Residential Buildings: A Case Study in Shenzhen, China," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    23. Alex Ximenes Naves & Laureano Jiménez Esteller & Assed Naked Haddad & Dieter Boer, 2021. "Targeting Energy Efficiency through Air Conditioning Operational Modes for Residential Buildings in Tropical Climates, Assisted by Solar Energy and Thermal Energy Storage. Case Study Brazil," Sustainability, MDPI, vol. 13(22), pages 1-29, November.
    24. Amin, Amin & Kem, Oudom & Gallegos, Pablo & Chervet, Philipp & Ksontini, Feirouz & Mourshed, Monjur, 2022. "Demand response in buildings: Unlocking energy flexibility through district-level electro-thermal simulation," Applied Energy, Elsevier, vol. 305(C).
    25. Zhang, Xiangyu & Pipattanasomporn, Manisa & Rahman, Saifur, 2017. "A self-learning algorithm for coordinated control of rooftop units in small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 205(C), pages 1034-1049.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Summerbell, Daniel L. & Khripko, Diana & Barlow, Claire & Hesselbach, Jens, 2017. "Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant," Applied Energy, Elsevier, vol. 197(C), pages 100-113.
    2. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    3. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    4. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    6. Meinrenken, Christoph J. & Mehmani, Ali, 2019. "Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs," Applied Energy, Elsevier, vol. 254(C).
    7. Droutsa, Kalliopi G. & Kontoyiannidis, Simon & Dascalaki, Elena G. & Balaras, Constantinos A., 2016. "Mapping the energy performance of hellenic residential buildings from EPC (energy performance certificate) data," Energy, Elsevier, vol. 98(C), pages 284-295.
    8. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    9. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    10. English, J. & Niet, T. & Lyseng, B. & Palmer-Wilson, K. & Keller, V. & Moazzen, I. & Pitt, L. & Wild, P. & Rowe, A., 2017. "Impact of electrical intertie capacity on carbon policy effectiveness," Energy Policy, Elsevier, vol. 101(C), pages 571-581.
    11. Yun, Lingxiang & Li, Lin & Ma, Shuaiyin, 2022. "Demand response for manufacturing systems considering the implications of fast-charging battery powered material handling equipment," Applied Energy, Elsevier, vol. 310(C).
    12. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    13. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.
    14. Alimohammadisagvand, Behrang & Jokisalo, Juha & Kilpeläinen, Simo & Ali, Mubbashir & Sirén, Kai, 2016. "Cost-optimal thermal energy storage system for a residential building with heat pump heating and demand response control," Applied Energy, Elsevier, vol. 174(C), pages 275-287.
    15. Fehrenbach, Daniel & Merkel, Erik & McKenna, Russell & Karl, Ute & Fichtner, Wolf, 2014. "On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach," Energy, Elsevier, vol. 71(C), pages 263-276.
    16. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    17. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    18. Ruddell, Benjamin L. & Salamanca, Francisco & Mahalov, Alex, 2014. "Reducing a semiarid city’s peak electrical demand using distributed cold thermal energy storage," Applied Energy, Elsevier, vol. 134(C), pages 35-44.
    19. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    20. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2017. "Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity," Applied Energy, Elsevier, vol. 188(C), pages 604-619.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:173:y:2016:i:c:p:406-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.