IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v282y2021ipas0306261920315397.html
   My bibliography  Save this article

Optimal design and experimental verification of piezoelectric energy harvester with fractal structure

Author

Listed:
  • Kwak, Wonil
  • Lee, Yongbok

Abstract

The important issues in the conventional rotating vibration energy harvester are that the energy transfer efficiency and the fatigue life were limited because considering only the simply transferred force direction. Thus, this work focuses on the improving energy efficiency of piezoelectric energy harvester with a novel fractal structure. The harvester is based not only on an optimization model analysis, but also on an experimental investigation of coupling coefficients (structural and piezoelectric coupling) that can significantly affect efficiency performance. A model with a single-degree of freedom is developed and then optimized a structure model, yielding fractal-form design and verifications of performance analysis. In order to verify the optimized model, experimental tests are undertaken on a partial fractal structure energy harvester with each of the transmitted force angles. The harvester efficiently converts all responses transmitted at various frequencies. However, by incomplete harvester assembly conditions, shows unusual hysteresis curve tendencies. Especially, the nonlinearity by a fractal structure in single-mode tends to average about 40% in vertical vibration, while the nonlinearity by tangent direction tends to decrease to about 20%. When the harvester is applied to the bearing system, it is observed that the stiffness and damping ratios of the bearing-rotor system by the elastic capacity increase according to the electromechanical characteristic of the energy harvester. As a result, it generates up to 7 mW with the force transmitted by the bearing vibration. It is suggested that the optimal harvester design for increasing energy efficiency of bearing applications, and the importance of nonlinearity study (hysteresis behavior by a friction effect) for harvester performance.

Suggested Citation

  • Kwak, Wonil & Lee, Yongbok, 2021. "Optimal design and experimental verification of piezoelectric energy harvester with fractal structure," Applied Energy, Elsevier, vol. 282(PA).
  • Handle: RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315397
    DOI: 10.1016/j.apenergy.2020.116121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920315397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
    2. Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
    3. Zou, Hong-Xiang & Zhao, Lin-Chuan & Gao, Qiu-Hua & Zuo, Lei & Liu, Feng-Rui & Tan, Ting & Wei, Ke-Xiang & Zhang, Wen-Ming, 2019. "Mechanical modulations for enhancing energy harvesting: Principles, methods and applications," Applied Energy, Elsevier, vol. 255(C).
    4. Wu, Yipeng & Qiu, Jinhao & Zhou, Shengpeng & Ji, Hongli & Chen, Yang & Li, Sen, 2018. "A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting," Applied Energy, Elsevier, vol. 231(C), pages 600-614.
    5. Maurya, Deepam & Kumar, Prashant & Khaleghian, Seyedmeysam & Sriramdas, Rammohan & Kang, Min Gyu & Kishore, Ravi Anant & Kumar, Vireshwar & Song, Hyun-Cheol & Park, Jung-Min (Jerry) & Taheri, Saied & , 2018. "Energy harvesting and strain sensing in smart tire for next generation autonomous vehicles," Applied Energy, Elsevier, vol. 232(C), pages 312-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
    2. Moradi-Dastjerdi, Rasool & Behdinan, Kamran, 2021. "Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate," Applied Energy, Elsevier, vol. 293(C).
    3. Shim, Hyo-Kyung & Sun, Shuailing & Kim, Hyun-Soo & Lee, Dong-Gyu & Lee, Yeon-Jeong & Jang, Ji-Soo & Cho, Kyung-Hoon & Baik, Jeong Min & Kang, Chong-Yun & Leng, Yonggang & Hur, Sunghoon & Song, Hyun-Ch, 2022. "On a nonlinear broadband piezoelectric energy harvester with a coupled beam array," Applied Energy, Elsevier, vol. 328(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    2. Na, Yonghyeon & Lee, Min-Seon & Lee, Jung Woo & Jeong, Young Hun, 2020. "Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure," Applied Energy, Elsevier, vol. 264(C).
    3. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    4. Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
    5. Ying Wu & Zhi Cheng & Ryley McConkey & Fue-Sang Lien & Eugene Yee, 2022. "Modelling of Flow-Induced Vibration of Bluff Bodies: A Comprehensive Survey and Future Prospects," Energies, MDPI, vol. 15(22), pages 1-63, November.
    6. Zou, Hong-Xiang & Li, Meng & Zhao, Lin-Chuan & Gao, Qiu-Hua & Wei, Ke-Xiang & Zuo, Lei & Qian, Feng & Zhang, Wen-Ming, 2021. "A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting," Energy, Elsevier, vol. 217(C).
    7. Sun, Rujie & Li, Qinyu & Yao, Jianfei & Scarpa, Fabrizio & Rossiter, Jonathan, 2020. "Tunable, multi-modal, and multi-directional vibration energy harvester based on three-dimensional architected metastructures," Applied Energy, Elsevier, vol. 264(C).
    8. Song, Gyeong Ju & Cho, Jae Yong & Kim, Kyung-Bum & Ahn, Jung Hwan & Song, Yewon & Hwang, Wonseop & Hong, Seong Do & Sung, Tae Hyun, 2019. "Development of a pavement block piezoelectric energy harvester for self-powered walkway applications," Applied Energy, Elsevier, vol. 256(C).
    9. Zhang, Mingjie & Abdelkefi, Abdessattar & Yu, Haiyan & Ying, Xuyong & Gaidai, Oleg & Wang, Junlei, 2021. "Predefined angle of attack and corner shape effects on the effectiveness of square-shaped galloping energy harvesters," Applied Energy, Elsevier, vol. 302(C).
    10. Liu, Weiqun & Yuan, Zhongxin & Zhang, Shuang & Zhu, Qiao, 2019. "Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Fan, Kangqi & Qu, Hengheng & Wu, Yipeng & Wen, Tao & Wang, Fei, 2020. "Design and development of a rotational energy harvester for ultralow frequency vibrations and irregular human motions," Renewable Energy, Elsevier, vol. 156(C), pages 1028-1039.
    12. Zhang, Ying & Wang, Wei & Xie, Junxiao & Lei, Yaguo & Cao, Junyi & Xu, Ye & Bader, Sebastian & Bowen, Chris & Oelmann, Bengt, 2022. "Enhanced variable reluctance energy harvesting for self-powered monitoring," Applied Energy, Elsevier, vol. 321(C).
    13. Yu, Gang & He, Lipeng & Zhou, Jianwen & Liu, Lei & Zhang, Bangcheng & Cheng, Guangming, 2021. "Study on mirror-image rotating piezoelectric energy harvester," Renewable Energy, Elsevier, vol. 178(C), pages 692-700.
    14. Deng, Licheng & Jiang, Jian & Zhang, Dingli & Zhou, Lin & Fang, Yuming, 2021. "Design and modeling a frequency self-tuning vibration energy harvester for rotational applications," Energy, Elsevier, vol. 235(C).
    15. Zhao, Lin-Chuan & Zou, Hong-Xiang & Zhao, Ying-Jie & Wu, Zhi-Yuan & Liu, Feng-Rui & Wei, Ke-Xiang & Zhang, Wen-Ming, 2022. "Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process," Applied Energy, Elsevier, vol. 314(C).
    16. Miao, Gang & Fang, Shitong & Wang, Suo & Zhou, Shengxi, 2022. "A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism," Applied Energy, Elsevier, vol. 305(C).
    17. Fang, Shitong & Miao, Gang & Chen, Keyu & Xing, Juntong & Zhou, Shengxi & Yang, Zhichun & Liao, Wei-Hsin, 2022. "Broadband energy harvester for low-frequency rotations utilizing centrifugal softening piezoelectric beam array," Energy, Elsevier, vol. 241(C).
    18. Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
    19. Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
    20. Zhiwen Chen & Zhongsheng Chen & Yongxiang Wei, 2022. "Quasi-Zero Stiffness-Based Synchronous Vibration Isolation and Energy Harvesting: A Comprehensive Review," Energies, MDPI, vol. 15(19), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.