IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v274y2020ics0306261920308382.html
   My bibliography  Save this article

Preference cone based multi-objective evolutionary algorithm applied to optimal management of distributed energy resources in microgrids

Author

Listed:
  • Ferreira, Willian M.
  • Meneghini, Ivan R.
  • Brandao, Danilo I.
  • Guimarães, Frederico G.

Abstract

The existence of unbalanced loads and high penetration of single-phase distributed energy resources connected unevenly throughout the phases of a microgrid causes unbalanced currents through the microgrid’s point of common coupling and then degradation of power factor. This paper proposes a multi-objective optimization model applied to optimization the use of distributed energy resources in an energy system. The centralized control strategy is divided into three levels integrated into a master controller. The primary level performs the local functions of distributed inverters. The secondary level is split into two layers: the first layer performed by the power-based control is responsible for sharing active/reactive power among distributed units, as well as dispatching power to the upstream network using a low-speed communication link; and the second layer employs a preference cone based multi-objective evolutionary algorithm based on decomposition for the solution of the proposed multi-objective optimization formulation to maximize the active power injection by single-phase units, and minimize the currents unbalance into the main grid. The preference cone based multi-objective evolutionary algorithm has obtained solutions with good repeatability, convergence and distribution leading the microgrid to operate at its optimal point while maintaining its stability. Finally, the tertiary level defines the constrains of active and reactive power based on the utility status. This paper focuses on the secondary level of control and the proposed method is assessed by computational simulations considering a three-phase four-wire microgrid operating in both islanded and grid-connected modes under realistic operational conditions in terms of load, generation and grid variations.

Suggested Citation

  • Ferreira, Willian M. & Meneghini, Ivan R. & Brandao, Danilo I. & Guimarães, Frederico G., 2020. "Preference cone based multi-objective evolutionary algorithm applied to optimal management of distributed energy resources in microgrids," Applied Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920308382
    DOI: 10.1016/j.apenergy.2020.115326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaoxue & Wang, Chengshan & Xu, Tao & Guo, Lingxu & Li, Peng & Yu, Li & Meng, He, 2018. "Optimal voltage regulation for distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 210(C), pages 1027-1036.
    2. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    3. Wang, Xiaoxue & Wang, Chengshan & Xu, Tao & Meng, He & Li, Peng & Yu, Li, 2018. "Distributed voltage control for active distribution networks based on distribution phasor measurement units," Applied Energy, Elsevier, vol. 229(C), pages 804-813.
    4. Mak, Davye & Choeum, Daranith & Choi, Dae-Hyun, 2020. "Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources," Applied Energy, Elsevier, vol. 261(C).
    5. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    6. Wang, Licheng & Yan, Ruifeng & Saha, Tapan Kumar, 2019. "Voltage regulation challenges with unbalanced PV integration in low voltage distribution systems and the corresponding solution," Applied Energy, Elsevier, vol. 256(C).
    7. Ma, Yiju & Azuatalam, Donald & Power, Thomas & Chapman, Archie C. & Verbič, Gregor, 2019. "A novel probabilistic framework to study the impact of photovoltaic-battery systems on low-voltage distribution networks," Applied Energy, Elsevier, vol. 254(C).
    8. Coelho, Vitor N. & Weiss Cohen, Miri & Coelho, Igor M. & Liu, Nian & Guimarães, Frederico Gadelha, 2017. "Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids," Applied Energy, Elsevier, vol. 187(C), pages 820-832.
    9. Kyriakarakos, George & Piromalis, Dimitrios D. & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2013. "Intelligent demand side energy management system for autonomous polygeneration microgrids," Applied Energy, Elsevier, vol. 103(C), pages 39-51.
    10. Stringer, Naomi & Haghdadi, Navid & Bruce, Anna & Riesz, Jenny. & MacGill, Iain, 2020. "Observed behavior of distributed photovoltaic systems during major voltage disturbances and implications for power system security," Applied Energy, Elsevier, vol. 260(C).
    11. Kabir, M.N. & Mishra, Y. & Ledwich, G. & Xu, Z. & Bansal, R.C., 2014. "Improving voltage profile of residential distribution systems using rooftop PVs and Battery Energy Storage systems," Applied Energy, Elsevier, vol. 134(C), pages 290-300.
    12. Liu, Zifa & Chen, Yixiao & Zhuo, Ranqun & Jia, Hongjie, 2018. "Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling," Applied Energy, Elsevier, vol. 210(C), pages 1113-1125.
    13. Brandao, Danilo I. & de Araújo, Lucas S. & Caldognetto, Tommaso & Pomilio, José A., 2018. "Coordinated control of three- and single-phase inverters coexisting in low-voltage microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2050-2060.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ullah, Kalim & Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Javaid, Nadeem, 2021. "A multi-objective energy optimization in smart grid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 299(C).
    2. Bouzid, Allal El Moubarek & Chaoui, Hicham & Zerrougui, Mohamed & Ben Elghali, Seifeddine & Benbouzid, Mohamed, 2021. "Robust control based on linear matrix inequalities criterion of single phase distributed electrical energy systems operating in islanded and grid-connected modes," Applied Energy, Elsevier, vol. 292(C).
    3. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    4. Stennikov, Valery & Barakhtenko, Evgeny & Mayorov, Gleb & Sokolov, Dmitry & Zhou, Bin, 2022. "Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach," Applied Energy, Elsevier, vol. 309(C).
    5. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand," Applied Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    3. Almasalma, Hamada & Claeys, Sander & Deconinck, Geert, 2019. "Peer-to-peer-based integrated grid voltage support function for smart photovoltaic inverters," Applied Energy, Elsevier, vol. 239(C), pages 1037-1048.
    4. Mak, Davye & Choeum, Daranith & Choi, Dae-Hyun, 2020. "Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources," Applied Energy, Elsevier, vol. 261(C).
    5. Zhao, Bo & Chen, Jian & Zhang, Leiqi & Zhang, Xuesong & Qin, Ruwen & Lin, Xiangning, 2018. "Three representative island microgrids in the East China Sea: Key technologies and experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 262-274.
    6. Jingpeng Yue & Zhijian Hu & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2019. "A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    7. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    8. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    9. Sahoo, Subham & Pullaguram, Deepak & Mishra, Sukumar & Wu, Jianzhong & Senroy, Nilanjan, 2018. "A containment based distributed finite-time controller for bounded voltage regulation & proportionate current sharing in DC microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2526-2538.
    10. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2018. "A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks," Applied Energy, Elsevier, vol. 228(C), pages 2024-2036.
    11. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    12. Helder Pereira & Bruno Ribeiro & Luis Gomes & Zita Vale, 2022. "Smart Grid Ecosystem Modeling Using a Novel Framework for Heterogenous Agent Communities," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    13. Wang, Xiaoxue & Wang, Chengshan & Xu, Tao & Meng, He & Li, Peng & Yu, Li, 2018. "Distributed voltage control for active distribution networks based on distribution phasor measurement units," Applied Energy, Elsevier, vol. 229(C), pages 804-813.
    14. Ruiqiu Yao & Yukun Hu & Liz Varga, 2023. "Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review," Energies, MDPI, vol. 16(5), pages 1-36, March.
    15. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    16. Tang, Chong & Liu, Mingbo & Dai, Yue & Wang, Zhijun & Xie, Min, 2019. "Decentralized saddle-point dynamics solution for optimal power flow of distribution systems with multi-microgrids," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2016. "The potential role of solid biomass for rural electrification: A techno economic analysis for a hybrid microgrid in India," Applied Energy, Elsevier, vol. 169(C), pages 370-383.
    18. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    19. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2018. "Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    20. Kang, Wenfa & Chen, Minyou & Guan, Yajuan & Wei, Baoze & Vasquez Q., Juan C. & Guerrero, Josep M., 2022. "Event-triggered distributed voltage regulation by heterogeneous BESS in low-voltage distribution networks," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920308382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.