IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v274y2020ics0306261920307728.html
   My bibliography  Save this article

Techno-economic potential of low-temperature, jacket-water heat recovery from stationary internal combustion engines with organic Rankine cycles: A cross-sector food-retail study

Author

Listed:
  • Le Brun, Niccolo
  • Simpson, Michael
  • Acha, Salvador
  • Shah, Nilay
  • Markides, Christos N.

Abstract

We examine the opportunities and challenges of deploying integrated organic Rankine cycle (ORC) engines to recover heat from low-temperature jacket-water cooling circuits of small-scale gas-fired internal combustion engines (ICEs), for the supply of combined heat and power (CHP) to supermarkets. Based on data for commercially-available ICE and ORC engines, a techno-economic model is developed and applied to simulate system performance in real buildings. Under current market trends and for the specific (low-temperature) ICE + ORC CHP configuration investigated here, results show that the ICE determines most economic savings, while the ORC engine does not significantly impact the integrated CHP system performance. The ORC engines have long payback times (4–9 years) in this application, because: (1) they do not displace high-value electricity, as the value of exporting electricity to the grid is low, and (2) it is more profitable to use the heat from the ICEs for space heating rather than for electricity conversion. Commercial ORC engines are most viable (payback ≈ 4 years) in buildings with high electrical demands and low heat-to-power ratios. The influence of factors such as the ORC engine efficiency, capital cost and energy prices is also evaluated, highlighting performance gaps and identifying promising areas for future research.

Suggested Citation

  • Le Brun, Niccolo & Simpson, Michael & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "Techno-economic potential of low-temperature, jacket-water heat recovery from stationary internal combustion engines with organic Rankine cycles: A cross-sector food-retail study," Applied Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920307728
    DOI: 10.1016/j.apenergy.2020.115260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acha, Salvador & Mariaud, Arthur & Shah, Nilay & Markides, Christos N., 2018. "Optimal design and operation of distributed low-carbon energy technologies in commercial buildings," Energy, Elsevier, vol. 142(C), pages 578-591.
    2. Oyeniyi A. Oyewunmi & Christos N. Markides, 2016. "Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System," Energies, MDPI, vol. 9(6), pages 1-21, June.
    3. Wang, Tianyou & Zhang, Yajun & Peng, Zhijun & Shu, Gequn, 2011. "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2862-2871, August.
    4. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    5. Efstratiadi, Marily & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2019. "Analysis of a closed-loop water-cooled refrigeration system in the food retail industry: A UK case study," Energy, Elsevier, vol. 174(C), pages 1133-1144.
    6. Scaccabarozzi, Roberto & Tavano, Michele & Invernizzi, Costante Mario & Martelli, Emanuele, 2018. "Comparison of working fluids and cycle optimization for heat recovery ORCs from large internal combustion engines," Energy, Elsevier, vol. 158(C), pages 396-416.
    7. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    8. Pantaleo, Antonio M. & Fordham, Julia & Oyewunmi, Oyeniyi A. & De Palma, Pietro & Markides, Christos N., 2018. "Integrating cogeneration and intermittent waste-heat recovery in food processing: Microturbines vs. ORC systems in the coffee roasting industry," Applied Energy, Elsevier, vol. 225(C), pages 782-796.
    9. Maouris, Georgios & Sarabia Escriva, Emilio Jose & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach," Applied Energy, Elsevier, vol. 264(C).
    10. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    12. Simpson, Michael C. & Chatzopoulou, Maria Anna & Oyewunmi, Oyeniyi A. & Le Brun, Niccolo & Sapin, Paul & Markides, Christos N., 2019. "Technoeconomic analysis of internal combustion engine – organic Rankine cycle systems for combined heat and power in energy-intensive buildings," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
    14. Victor Caritte & Salvador Acha & Nilay Shah, 2015. "Enhancing Corporate Environmental Performance Through Reporting and Roadmaps," Business Strategy and the Environment, Wiley Blackwell, vol. 24(5), pages 289-308, July.
    15. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2015. "An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications," Applied Energy, Elsevier, vol. 138(C), pages 605-620.
    16. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
    17. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    18. Acha, Salvador & Le Brun, Niccolo & Damaskou, Maria & Fubara, Tekena Craig & Mulgundmath, Vinay & Markides, Christos N. & Shah, Nilay, 2020. "Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector," Energy, Elsevier, vol. 206(C).
    19. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    20. Cedillos Alvarado, Dagoberto & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2016. "A Technology Selection and Operation (TSO) optimisation model for distributed energy systems: Mathematical formulation and case study," Applied Energy, Elsevier, vol. 180(C), pages 491-503.
    21. Vaja, Iacopo & Gambarotta, Agostino, 2010. "Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)," Energy, Elsevier, vol. 35(2), pages 1084-1093.
    22. Chatzopoulou, Maria Anna & Markides, Christos N., 2018. "Thermodynamic optimisation of a high-electrical efficiency integrated internal combustion engine – Organic Rankine cycle combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 1229-1251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles E. Sprouse, 2024. "Review of Organic Rankine Cycles for Internal Combustion Engine Waste Heat Recovery: Latest Decade in Review," Sustainability, MDPI, vol. 16(5), pages 1-74, February.
    2. Fuhaid Alshammari & Apostolos Pesyridis & Mohamed Elashmawy, 2020. "Generation of 3D Turbine Blades for Automotive Organic Rankine Cycles: Mathematical and Computational Perspectives," Mathematics, MDPI, vol. 9(1), pages 1-30, December.
    3. Mohan, Sooraj & Dinesha, P. & Campana, Pietro Elia, 2022. "ANN-PSO aided selection of hydrocarbons as working fluid for low-temperature organic Rankine cycle and thermodynamic evaluation of optimal working fluid," Energy, Elsevier, vol. 259(C).
    4. Acha, Salvador & Le Brun, Niccolo & Damaskou, Maria & Fubara, Tekena Craig & Mulgundmath, Vinay & Markides, Christos N. & Shah, Nilay, 2020. "Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector," Energy, Elsevier, vol. 206(C).
    5. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acha, Salvador & Le Brun, Niccolo & Damaskou, Maria & Fubara, Tekena Craig & Mulgundmath, Vinay & Markides, Christos N. & Shah, Nilay, 2020. "Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector," Energy, Elsevier, vol. 206(C).
    2. Olympios, Andreas V. & Pantaleo, Antonio M. & Sapin, Paul & Markides, Christos N., 2020. "On the value of combined heat and power (CHP) systems and heat pumps incentralised and distributed heating systems: Lessons from multi-fidelitymodelling approaches," Applied Energy, Elsevier, vol. 274(C).
    3. Simpson, Michael C. & Chatzopoulou, Maria Anna & Oyewunmi, Oyeniyi A. & Le Brun, Niccolo & Sapin, Paul & Markides, Christos N., 2019. "Technoeconomic analysis of internal combustion engine – organic Rankine cycle systems for combined heat and power in energy-intensive buildings," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    6. White, M.T. & Oyewunmi, O.A. & Chatzopoulou, M.A. & Pantaleo, A.M. & Haslam, A.J. & Markides, C.N., 2018. "Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery," Energy, Elsevier, vol. 161(C), pages 1181-1198.
    7. Charles E. Sprouse, 2024. "Review of Organic Rankine Cycles for Internal Combustion Engine Waste Heat Recovery: Latest Decade in Review," Sustainability, MDPI, vol. 16(5), pages 1-74, February.
    8. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    9. Pantaleo, Antonio M. & Camporeale, Sergio M. & Sorrentino, Arianna & Miliozzi, Adio & Shah, Nilay & Markides, Christos N., 2020. "Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas," Renewable Energy, Elsevier, vol. 147(P3), pages 2913-2931.
    10. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    11. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.
    12. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.
    14. Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
    15. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Wang, Jingyu & Li, Min & Shu, Gequn, 2021. "Adaptive flow assignment for CO2 transcritical power cycle (CTPC): An engine operational profile-based off-design study," Energy, Elsevier, vol. 225(C).
    16. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    17. Domingues, António & Santos, Helder & Costa, Mário, 2013. "Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle," Energy, Elsevier, vol. 49(C), pages 71-85.
    18. Ramos, Alba & Chatzopoulou, Maria Anna & Freeman, James & Markides, Christos N., 2018. "Optimisation of a high-efficiency solar-driven organic Rankine cycle for applications in the built environment," Applied Energy, Elsevier, vol. 228(C), pages 755-765.
    19. Chatzopoulou, Maria Anna & Markides, Christos N., 2018. "Thermodynamic optimisation of a high-electrical efficiency integrated internal combustion engine – Organic Rankine cycle combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 1229-1251.
    20. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920307728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.