IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920304888.html
   My bibliography  Save this article

Study on coal water slurries prepared from coal chemical wastewater and their industrial application

Author

Listed:
  • Li, Dedi
  • Liu, Jianzhong
  • Wang, Shuangni
  • Cheng, Jun

Abstract

The coal water slurry gasification combined with ammonia synthesis process produces various complex wastewaters that are difficult to handle, and the improper disposal of these wastewaters causes great harm to the environment. In this paper, coal wastewater slurry was prepared from these wastewaters, and its slurryability, rheology and stability were measured. The gasification characteristics were studied in a coal water slurry gasifier. Results show that (a) The gas washing wastewater, sulfur wastewater and industrial wastewater can promote slurryability, whereas carbonized water is not conducive to promoting slurryability. The mixed wastewater, that comprises all four types of wastewater mentioned above, promotes slurryability and has a slurry concentration of 62.0%. All coal wastewater slurries exhibit pseudoplastic fluid property, which are beneficial for industrial pumping and atomization. The stability of the samples was evaluated by analyzing the water separation rate, and all coal wastewater slurries show better stability than the coal deionized water slurry. (b) In the industrial application process, the active component of the syngas produced from the gasification of the coal mixed wastewater slurry can reach 78.6% and has a higher H2 content than the syngas produced from ordinary coal water slurry. Moreover, using the coal mixed wastewater slurry can increase cold gas efficiency by 1.57% and carbon conversion rate by 0.45% in industrial processes. Therefore, preparing and using coal mixed wastewater slurry in coal water slurry gasification combined with ammonia synthesis process not only treats high-concentration wastewater but also achieves sustainable development and a circular economy model.

Suggested Citation

  • Li, Dedi & Liu, Jianzhong & Wang, Shuangni & Cheng, Jun, 2020. "Study on coal water slurries prepared from coal chemical wastewater and their industrial application," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304888
    DOI: 10.1016/j.apenergy.2020.114976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Lu & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo, 2017. "Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry," Applied Energy, Elsevier, vol. 187(C), pages 627-639.
    2. Park, Seo Yun & Oh, Gunung & Kim, Kwangyul & Seo, Myung Won & Ra, Ho Won & Mun, Tae Young & Lee, Jae Goo & Yoon, Sang Jun, 2017. "Deactivation characteristics of Ni and Ru catalysts in tar steam reforming," Renewable Energy, Elsevier, vol. 105(C), pages 76-83.
    3. Déparrois, N. & Singh, P. & Burra, K.G. & Gupta, A.K., 2019. "Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2," Applied Energy, Elsevier, vol. 246(C), pages 1-10.
    4. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Li, Xiumin & Huang, Wei & Abudula, Abuliti, 2014. "Promoting effect of various biomass ashes on the steam gasification of low-rank coal," Applied Energy, Elsevier, vol. 133(C), pages 282-288.
    5. Galina Nyashina & Jean Claude Legros & Pavel Strizhak, 2017. "Environmental Potential of Using Coal-Processing Waste as the Primary and Secondary Fuel for Energy Providers," Energies, MDPI, vol. 10(3), pages 1-11, March.
    6. Botero, Cristina & Field, Randall P. & Herzog, Howard J. & Ghoniem, Ahmed F., 2013. "Impact of finite-rate kinetics on carbon conversion in a high-pressure, single-stage entrained flow gasifier with coal–CO2 slurry feed," Applied Energy, Elsevier, vol. 104(C), pages 408-417.
    7. Wu, Zhiqiang & Yang, Wangcai & Meng, Haiyu & Zhao, Jun & Chen, Lin & Luo, Zhengyuan & Wang, Shuzhong, 2017. "Physicochemical structure and gasification reactivity of co-pyrolysis char from two kinds of coal blended with lignocellulosic biomass: Effects of the carboxymethylcellulose sodium," Applied Energy, Elsevier, vol. 207(C), pages 96-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vadim Dorokhov & Geniy Kuznetsov & Galina Nyashina, 2022. "Combustion of Coal and Coal Slime in Steam-Air Environment and in Slurry Form," Energies, MDPI, vol. 15(24), pages 1-23, December.
    2. Shi, Jingxin & Huang, Wenping & Han, Hongjun & Xu, Chunyan, 2021. "Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Ren, Yangguang & Xu, Zhiqiang & Gu, Suqian, 2022. "Physicochemical properties and slurry ability changes of lignite after microwave upgrade with the assist of lignite semi-coke," Energy, Elsevier, vol. 252(C).
    4. Mao, Lirui & Zheng, Mingdong & Li, Hanxu, 2023. "Acceleration effect of BDO tar on coal water slurry during co-gasification," Energy, Elsevier, vol. 262(PA).
    5. Byun, Manhee & Lim, Dongjun & Lee, Boreum & Kim, Ayeon & Lee, In-Beum & Brigljević, Boris & Lim, Hankwon, 2022. "Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration," Applied Energy, Elsevier, vol. 307(C).
    6. Ren, Yangguang & Lv, Ziqi & Xu, Zhiqiang & Wang, Qun & Wang, Zhe, 2023. "Slurry-ability mathematical modeling of microwave-modified lignite: A comparative analysis of multivariate non-linear regression model and XGBoost algorithm model," Energy, Elsevier, vol. 281(C).
    7. Konstantin Osintsev & Sergei Aliukov & Anatoliy Alabugin, 2022. "A Review of Methods, and Analytical and Experimental Studies on the Use of Coal–Water Suspensions," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    8. Zhang, Yueling & Li, Junjie & Yang, Xiaoxiao, 2021. "Comprehensive competitiveness assessment of four coal-to-liquid routes and conventional oil refining route in China," Energy, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhiqiang & Zhang, Jie & Zhang, Bo & Guo, Wei & Yang, Guidong & Yang, Bolun, 2020. "Synergistic effects from co-pyrolysis of lignocellulosic biomass main component with low-rank coal: Online and offline analysis on products distribution and kinetic characteristics," Applied Energy, Elsevier, vol. 276(C).
    2. Duan, Wenjun & Yu, Qingbo & Liu, Junxiang & Wu, Tianwei & Yang, Fan & Qin, Qin, 2016. "Experimental and kinetic study of steam gasification of low-rank coal in molten blast furnace slag," Energy, Elsevier, vol. 111(C), pages 859-868.
    3. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    4. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    5. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
    6. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.
    8. Gupta, Saurabh & De, Santanu, 2022. "An experimental investigation of high-ash coal gasification in a pilot-scale bubbling fluidized bed reactor," Energy, Elsevier, vol. 244(PB).
    9. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    10. Galina Nyashina & Pavel Strizhak, 2018. "Impact of Forest Fuels on Gas Emissions in Coal Slurry Fuel Combustion," Energies, MDPI, vol. 11(9), pages 1-16, September.
    11. Anastasia Islamova & Pavel Tkachenko & Kristina Pavlova & Pavel Strizhak, 2022. "Interaction between Droplets and Particles as Oil–Water Slurry Components," Energies, MDPI, vol. 15(21), pages 1-23, November.
    12. Mazzoni, Luca & Janajreh, Isam & Elagroudy, Sherien & Ghenai, Chaouki, 2020. "Modeling of plasma and entrained flow co-gasification of MSW and petroleum sludge," Energy, Elsevier, vol. 196(C).
    13. Jeong, Yong-Seong & Kim, Jong-Woo & Seo, Myung-Won & Mun, Tae-Young & Kim, Joo-Sik, 2021. "Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent," Energy, Elsevier, vol. 219(C).
    14. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Yu, Xu & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2023. "Effects of steam treatment on the internal moisture and physicochemical structure of coal and their implications for coalbed methane recovery," Energy, Elsevier, vol. 270(C).
    15. Li, Jinhu & Ye, Xinhao & Burra, Kiran G. & Lu, Wei & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2023. "Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene," Applied Energy, Elsevier, vol. 336(C).
    16. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    17. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    18. Lin, Xiongchao & Luo, Meng & Li, Shouyi & Yang, Yuanping & Chen, Xujun & Tian, Bin & Wang, Yonggang, 2017. "The evolutionary route of coal matrix during integrated cascade pyrolysis of a typical low-rank coal," Applied Energy, Elsevier, vol. 199(C), pages 335-346.
    19. Kim, Hakduck & Choi, Jeongmin & Lim, Heechang & Song, Juhun, 2021. "Enhanced combustion processes of liquid carbon dioxide (LCO2)–low rank coal slurry at high pressures," Energy, Elsevier, vol. 237(C).
    20. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.