IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920303846.html
   My bibliography  Save this article

Modeling the transmittance of anisotropic diffuse radiation towards estimating energy losses in solar panel coverings

Author

Listed:
  • Arias-Rosales, Andrés
  • LeDuc, Philip R.

Abstract

The performance assessment of photovoltaic arrays involves estimating the energy that is lost due to different sources, such as optical losses in the protective coverings. These transparent coatings do not transmit all incoming solar radiation due to partial reflections and absorptions that intensify with the angle of solar incidence. In the case of beam radiation, which consists of parallel rays with a deterministic incidence, the transmittance can be assessed with well-known analytical models. Alternately, more complex diffuse radiation consists of scattered rays with stochastic and anisotropic distributions. Consequently, the transmittance of diffuse radiation is commonly ignored or oversimplified with limited models. This work presents a new set of general models for estimating the transmittance of anisotropic diffuse radiation. Transmittance was determined from surface integrals models solved over the geometrical regions corresponding to the diffuse radiation components, i.e., sky isotropic, circumsolar, horizon brightening, and albedo. This approach was validated against stochastic rays simulations, which converged with RMSE below 0.05% transmittance. The surface integrals were then solved for the relevant discretized input ranges, and regression models were fitted to capture the resulting behavior. With high flexibility, the inputs of these regression models allow for specifying the covering characteristics and the sun and panel angular positions. The proposed models allowed us to incorporate the estimation of transmittance losses to a broader energy harvesting analysis. In a case study, the effect on annual energy was calculated comparing four transmittance modeling approaches with three different covering specifications, three panel inclinations, three sky models, and in two locations. The range of variation due to the covering specifications can result in energy losses of 16.33% compared to using a covering with the highest transmittance. The findings and methods presented in this work have implications in areas ranging from the modeling of energy harvesting to the design and development of solar panels and protective transparent coatings.

Suggested Citation

  • Arias-Rosales, Andrés & LeDuc, Philip R., 2020. "Modeling the transmittance of anisotropic diffuse radiation towards estimating energy losses in solar panel coverings," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920303846
    DOI: 10.1016/j.apenergy.2020.114872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920303846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xingcai, Li & Kun, Niu, 2018. "Effectively predict the solar radiation transmittance of dusty photovoltaic panels through Lambert-Beer law," Renewable Energy, Elsevier, vol. 123(C), pages 634-638.
    2. Huang, Zhaojian & Mendis, Thushini & Xu, Shen, 2019. "Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 250(C), pages 283-291.
    3. Wong, L. T. & Chow, W. K., 2001. "Solar radiation model," Applied Energy, Elsevier, vol. 69(3), pages 191-224, July.
    4. Bagheri, Mehdi & Delbari, Seyed Hamid & Pakzadmanesh, Mina & Kennedy, Christopher A., 2019. "City-integrated renewable energy design for low-carbon and climate-resilient communities," Applied Energy, Elsevier, vol. 239(C), pages 1212-1225.
    5. Maatallah, Taher & El Alimi, Souheil & Nassrallah, Sassi Ben, 2011. "Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4053-4066.
    6. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    7. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Lu, Yashun & Ji, Jie, 2018. "Life-cycle assessment of a low-concentration PV module for building south wall integration in China," Applied Energy, Elsevier, vol. 215(C), pages 174-185.
    8. Gaglia, Athina G. & Lykoudis, Spyros & Argiriou, Athanassios A. & Balaras, Constantinos A. & Dialynas, Evangelos, 2017. "Energy efficiency of PV panels under real outdoor conditions–An experimental assessment in Athens, Greece," Renewable Energy, Elsevier, vol. 101(C), pages 236-243.
    9. Lin, Wenye & Ren, Haoshan & Ma, Zhenjun, 2020. "Mathematical modelling and experimental investigation of solar air collectors with corrugated absorbers," Renewable Energy, Elsevier, vol. 145(C), pages 164-179.
    10. Batlles, F.J. & Rubio, M.A. & Tovar, J. & Olmo, F.J. & Alados-Arboledas, L., 2000. "Empirical modeling of hourly direct irradiance by means of hourly global irradiance," Energy, Elsevier, vol. 25(7), pages 675-688.
    11. Moslehi, Salim & Reddy, T. Agami & Katipamula, Srinivas, 2018. "Evaluation of data-driven models for predicting solar photovoltaics power output," Energy, Elsevier, vol. 142(C), pages 1057-1065.
    12. Patel, M. Tahir & Khan, M. Ryyan & Sun, Xingshu & Alam, Muhammad A., 2019. "A worldwide cost-based design and optimization of tilted bifacial solar farms," Applied Energy, Elsevier, vol. 247(C), pages 467-479.
    13. Huang, Wenfeng & Zhou, Kun & Sun, Ke & He, Zhu, 2019. "Effects of wind flow structure, particle flow and deposition pattern on photovoltaic energy harvest around a block," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukač, Niko & Mongus, Domen & Žalik, Borut & Štumberger, Gorazd & Bizjak, Marko, 2024. "Novel GPU-accelerated high-resolution solar potential estimation in urban areas by using a modified diffuse irradiance model," Applied Energy, Elsevier, vol. 353(PA).
    2. Luis O. Polanco Vásquez & Víctor M. Ramírez & Diego Langarica Córdova & Juana López Redondo & José Domingo Álvarez & José Luis Torres-Moreno, 2021. "Optimal Management of a Microgrid with Radiation and Wind-Speed Forecasting: A Case Study Applied to a Bioclimatic Building," Energies, MDPI, vol. 14(9), pages 1-16, April.
    3. Arias-Rosales, Andrés & LeDuc, Philip R., 2020. "Comparing View Factor modeling frameworks for the estimation of incident solar energy," Applied Energy, Elsevier, vol. 277(C).
    4. Arias-Rosales, Andrés & LeDuc, Philip R., 2023. "Urban solar harvesting: The importance of diffuse shadows in complex environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Agrawal, Monika & Chhajed, Priyank & Chowdhury, Amartya, 2022. "Performance analysis of photovoltaic module with reflector: Optimizing orientation with different tilt scenarios," Renewable Energy, Elsevier, vol. 186(C), pages 10-25.
    6. Arias-Rosales, Andrés & LeDuc, Philip R., 2022. "Shadow modeling in urban environments for solar harvesting devices with freely defined positions and orientations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    2. El Mghouchi, Y. & Ajzoul, T. & Taoukil, D. & El Bouardi, A., 2016. "The most suitable prediction model of the solar intensity, on horizontal plane, at various weather conditions in a specified location in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 84-98.
    3. El Mghouchi, Y. & El Bouardi, A. & Sadouk, A. & Fellak, I. & Ajzoul, T., 2016. "Comparison of three solar radiation models and their validation under all sky conditions – case study: Tetuan city in northern of Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1432-1444.
    4. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    5. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    6. Zhang, Wei & Zhao, Oufan & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhong, Jianmei & Zeng, Xiding & Zou, Ruiwen, 2023. "Factors influence analysis and life cycle assessment of innovative bifacial photovoltaic applied on building facade," Energy, Elsevier, vol. 279(C).
    7. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    8. Rivero, M. & Orozco, S. & Sellschopp, F.S. & Loera-Palomo, R., 2017. "A new methodology to extend the validity of the Hargreaves-Samani model to estimate global solar radiation in different climates: Case study Mexico," Renewable Energy, Elsevier, vol. 114(PB), pages 1340-1352.
    9. El Mghouchi, Y. & El Bouardi, A. & Choulli, Z. & Ajzoul, T., 2016. "Models for obtaining the daily direct, diffuse and global solar radiations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 87-99.
    10. Gulin, Marko & Vašak, Mario & Perić, Nedjeljko, 2013. "Dynamical optimal positioning of a photovoltaic panel in all weather conditions," Applied Energy, Elsevier, vol. 108(C), pages 429-438.
    11. Ranalli, Joseph & Alhamwi, Alaa, 2020. "Configurations of renewable power generation in cities using open source approaches: With Philadelphia case study," Applied Energy, Elsevier, vol. 269(C).
    12. Zhang, Xiongwen, 2014. "A statistical approach for sub-hourly solar radiation reconstruction," Renewable Energy, Elsevier, vol. 71(C), pages 307-314.
    13. Zhong, Jianmei & Zhang, Wei & Xie, Lingzhi & Zhao, Oufan & Wu, Xin & Zeng, Xiding & Guo, Jiahong, 2023. "Development and challenges of bifacial photovoltaic technology and application in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    14. Sohani, Ali & Sayyaadi, Hoseyn, 2020. "Providing an accurate method for obtaining the efficiency of a photovoltaic solar module," Renewable Energy, Elsevier, vol. 156(C), pages 395-406.
    15. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    16. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    17. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    19. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    20. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920303846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.